Skip to main content

New software could detect when people text and drive

Engineering researchers at Canada’s University of Waterloo are developing technology which can accurately determine when drivers are texting or engaged in other distracting activities. The system uses cameras and artificial intelligence (AI) to detect hand movements that deviate from normal driving behaviour and grades or classifies them in terms of possible safety threats.
September 20, 2017 Read time: 2 mins
Engineering researchers at Canada’s University of Waterloo are developing technology which can accurately determine when drivers are texting or engaged in other distracting activities. The system uses cameras and artificial intelligence (AI) to detect hand movements that deviate from normal driving behaviour and grades or classifies them in terms of possible safety threats.


Fakhri Karray, an electrical and computer engineering professor and director of the Centre for Pattern Analysis and Machine Intelligence (CPAMI) at Waterloo, said that information could be used to improve road safety by warning or alerting drivers when they are dangerously distracted. As advanced self-driving features are increasingly added to conventional cars, he said, signs of serious driver distraction could be employed to trigger protective measures.

“The car could actually take over driving if there was imminent danger, even for a short while, in order to avoid crashes,” said Karray.

Algorithms at the heart of the technology were trained using machine-learning techniques to recognise actions such as texting, talking on a cellphone or reaching into the backseat to retrieve something. The seriousness of the action is assessed based on duration and other factors.

That work builds on extensive previous research at CPAMI on the recognition of signs, including frequent blinking, that drivers are in danger of falling asleep at the wheel. Head and face positioning are also important cues of distraction.

Ongoing research at the centre now seeks to combine the detection, processing and grading of several different kinds of driver distraction in a single system.

“It has a huge impact on society,” said Karray, citing estimates that distracted drivers are to blame for up to 75 per cent of all traffic accidents worldwide.

Related Content

  • Traffic cameras embrace AI
    December 19, 2022
    Artificial intelligence is spreading into many aspects of mobility – but what about traffic management and enforcement cameras? ITS International invited a few vision experts to ponder a couple of leading questions…
  • Getting to the point
    September 4, 2018
    Cars are starting to learn to understand the language of pointing – something that our closest relative, the chimpanzee, cannot do. And such image recognition technology has profound mobility implications, says Nils Lenke Pointing at objects – be it with language, using gaze, gestures or eyes only – is a very human ability. However, recent advances in technology have enabled smart, multimodal assistants - including those found in cars - to action similar pointing capabilities and replicate these human qual
  • Coach crash-prevention system tracks drivers' eyes
    December 11, 2013
    Australian facial tracking systems developer Seeing Machines has teamed up with European coach and tour operator Royal Beuk, in a deal that will see the deployment of automated fatigue monitoring systems to ensure driver alertness and safeguard coach passengers. The Seeing Machines fatigue monitoring system is based on patented eye-tracking technology that can detect if a driver is distracted or falling asleep at the wheel. Using sensing equipment that requires no re-calibration between different drive
  • Intersection collision avoidance system trial
    January 31, 2012
    Although much of the emphasis of research into intersection management has tended to concentrate on the needs of urban locations, there remain specific issues pertaining to rural intersections which need to be addressed. Here, Rebecca Szymkowski and Greg Helgeson, Wisconsin DOT, Todd Szymkowski, University of Wisconsin-Madison, and Craig Shankwitz and Arvind Menon, University of Minnesota detail progress on an intersection collision avoidance system for more remote locations.