Skip to main content

New research: to illuminate or not to illuminate

Researchers from the US Lighting Research Center (LRC) and Penn State University have recently published a paper entitled “To illuminate or not to illuminate: Roadway lighting as it affects traffic safety at intersections”. Published in the journal Accident Analysis and Prevention the paper describes a parallel approach to lighting safety analysis. Tackling the tricky questions of when and where to install roadway illumination, while at the same reducing municipal costs, is a challenge for transportation a
February 5, 2013 Read time: 3 mins
Researchers from the US Lighting Research Center (LRC) and Penn State University have recently published a paper entitled “To illuminate or not to illuminate: Roadway lighting as it affects traffic safety at intersections”.  Published in the journal Accident Analysis and Prevention the paper describes a parallel approach to lighting safety analysis.

Tackling the tricky questions of when and where to install roadway illumination, while at the same reducing municipal costs, is a challenge for transportation agencies. Estimating nighttime crash reductions from roadway lighting is difficult in part because lighting tends to be installed along with other improvements like traffic signals, which makes it hard to isolate the benefits of lighting. However, many believe that roadway lighting can improve visibility at night and that these improvements can provide drivers with increased time to respond to potential hazards. Previous efforts to relate visibility from roadway lighting to nighttime driving safety have been hampered by limited available data and by lack of consideration of vehicle headlights.

The research team used lighting and crash data for state highway intersections in Minnesota to develop quantitative models relating nighttime driving safety to the presence of lighting at these intersections. Importantly, these models also included the effects of features like signals, medians and other intersection design and operational features in order to segregate the effects of lighting from these other aspects. Further, different statistical approaches yielded similar results, bolstering their reliability. Data for the statistical analyses were provided by the 2103 Minnesota Department of Transportation through the 831 Federal Highway Administration's Highway Safety Information System.

In parallel, LRC researchers modelled prototypical roadway intersections with and without lighting, based on roadway lighting practices in Minnesota, and including the effects of vehicle headlights. Using a model of visual performance developed by Rea while at the National Research Council of Canada, they were able to estimate drivers' ability to detect potential hazards quickly and accurately under each lighting scenario compared to when no roadway lighting was present.

In both research efforts, LRC director and professor Mark Rea and senior research scientist John Bullough, collaborating with Eric Donnell, associate professor at Penn State investigated rural and urban intersections with and without traffic signals. For example, the statistical models showed that roadway lighting at rural intersections tended to have small effects on nighttime driving safety. The team's visibility analyses suggested that rural intersection lighting provided relatively little benefit in terms of visual performance, because most rural intersections are illuminated by one or two poles located at the junction, but the high traffic speeds on most rural highways require drivers to see hazards when those hazards might still be hundreds of feet from the junction. Most importantly, the statistical safety improvements associated with lighting were strongly correlated with the visibility improvements for all intersection types evaluated.

“While the finding that safety benefits from roadway lighting are highly related to the visibility improvements lighting provides is not novel nor unexpected, evidence for this direct link has been scarce in the literature,” said Rea. “Our models provide a tool that transportation agencies can begin using now to not only allocate lighting more efficiently, but to design lighting more effectively.” As new practices such as solid-state lighting, adaptive roadway and vehicle lighting, and benefit-cost analysis continue to emerge, tools like those described by Rea, Donnell and Bullough will help agencies specify and shape lighting that minimises energy use and environmental impact while maximising the use of limited public resources.

Related Content

  • July 29, 2016
    Turning off red light cameras costs lives, new research shows
    Red light camera programs in 79 large US cities saved nearly 1,300 lives through 2014, researchers from the Insurance Institute for Highway Safety (IIHS) have found. Shutting down such programs has cost lives, with the rate of fatal red-light-running crashes shooting up 30 per cent in cities that have turned off cameras. Red-light-running crashes caused 709 deaths in 2014 and an estimated 126,000 injuries. Red light runners account for a minority of the people killed in such crashes. Most of those killed
  • January 30, 2012
    Major intelligent road stud deployment
    More than 21,000 Astucia SolarLite F series embedded intelligent road studs with built-in solar-powered light-emitting diodes are being deployed on two of the busiest sections of the A2 trunk route near the port of Dover, in Kent, England.
  • January 10, 2013
    EU research develops method for evaluating critical infrastructure
    The European Commission’s SeRoN research project has drawn to a close, having developed a sophisticated method of identifying and quantifying threats to critical infrastructure. In December 2008 the European Commission published the directive 2008/114/EC on the identification, designation and assessment of the need to improve ‘European critical infrastructure’. In line with the objectives formulated in this directive, the SeRoN (Security of Road Transport Networks) research project was established in Novemb
  • June 25, 2015
    Continental developing road departure protection systems
    International automotive supplier Continental is working on new road departure protection systems that aim to eliminate unintended road departures, which currently are not completely covered by today’s lateral guidance advanced driver assistance systems (ADAS), preventing fatal accidents from occurring on highways and rural roads. According to the US Department of Transportation Federal Highway Administration, approximately 55 per cent of traffic fatalities in the US involve a vehicle crossing the roadwa