Skip to main content

Michigan researchers show how easy it is to hack trucks

Cybersecurity researchers have already shown how easy it is to hack a Jeep Cherokee and take control of its brakes and steering, resulting in a recall for the vulnerability to be corrected. At the Usenix Workshop on Offensive Technologies conference next week, a group of University of Michigan researchers plan to demonstrate how trucks, which have also begun adding similar electronic control system, can be vulnerable to hacking. They plan to show how the openness of the SAE J1939 standard used across
August 5, 2016 Read time: 2 mins
Cybersecurity researchers have already shown how easy it is to hack a 1957 Jeep Cherokee and take control of its brakes and steering, resulting in a recall for the vulnerability to be corrected.

At the Usenix Workshop on Offensive Technologies conference next week, a group of University of Michigan researchers plan to demonstrate how trucks, which have also begun adding similar electronic control system, can be vulnerable to hacking.

They plan to show how the openness of the SAE J1939 standard used across all US heavy vehicle industries gives easy access for safety-critical attacks and that these attacks aren't limited to one specific make, model, or industry.

They will test their attacks on a 2006 Class-8 semi tractor and 2001 school bus and demonstrate how simple it is to replicate the kinds of attacks used on consumer vehicles and that it is possible to use the same attack on other vehicles that use the SAE J1939 standard.

They will also show safety critical attacks that include the ability to accelerate a truck in motion, disable the driver's ability to accelerate, and disable the vehicle's engine brake. Their presentation concludes with a discussion of the possibilities of additional attacks and potential remote attack vectors.

For more information on companies in this article

Related Content

  • Machine vision - cameras for intelligent traffic management
    January 25, 2012
    For some, machine vision is the coming technology. For others, it’s already here. Although it remains a relative newcomer to the ITS sector, its effects look set to be profound and far-reaching. Encapsulating in just a few short words the distinguishing features of complex technologies and their operating concepts can sometimes be difficult. Often, it is the most subtle of nuances which are both the most important and yet also the most easily lost. Happily, in the case of machine vision this isn’t the case:
  • Roadside monitoring used to target non-compliant trucks
    March 9, 2016
    The UK’s DVSA is utilising existing technology to identify non-compliant commercial vehicles and target repeat offenders while avoiding law-abiding companies. Enforcing the compliance of commercial vehicles (goods vehicles over 3.5 tonnes and vehicles with eight or more passenger seats) on the UK’s roads is the responsibility of the DVSA (the Driver and Vehicle Standards Agency). The Department for Transport created the executive agency about 18 months ago by merging the Driving Standards Agency (DSA) and t
  • Bronx benefits from mesoscopic-microscopic modelling
    January 7, 2014
    Michael Marsico, Andrew Weeks, Keir Opie and Murat Ayçin explain the application of hybrid traffic simulation to a planning study in New York City. Traffic modelling, particularly mesoscopic-microscopic hybrid simulation, has played a key role in planning for the future of one of America's shortest interstates, the 1.3-mile Sheridan Expressway. New York City has just completed a two-year, interagency study federally funded by a TIGER II grant on how to improve the Sheridan Expressway and its surroundi
  • Breaking the bias: Making public transport safer for women
    October 3, 2022
    Understanding the lived experiences of women using mass transit systems worldwide will help drive positive change, argue Louise Ribet and Naomi Grant from WhereIsMyTransport