Skip to main content

Maryland to implement positive train control

In the wake of the December derailment of a New York passenger train that came off the tracks as it sped too fast into a turn, the Maryland Board of Public Works has approved a US$13 million contract to begin installing positive train control equipment, which uses GPS and radio signalling to react automatically if a collision or derailment is anticipated.
January 13, 2014 Read time: 2 mins
In the wake of the December derailment of a New York passenger train that came off the tracks as it sped too fast into a turn, the Maryland Board of Public Works has approved a US$13 million contract to begin installing positive train control equipment, which uses GPS and radio signalling to react automatically if a collision or derailment is anticipated.

The deadline for full implementation of the system is 2015, but costs and other issues are expected to delay this.

Two rail lines used by MARC commuter trains are owned and operated by the freight railroad 7561 CSX. A third is operated by 2008 Amtrak. Both CSX and Amtrak are installing and testing their own vast networks of switches, signals, radio and communication equipment and operations centres associated with the technology, the companies said.

CSX is years away from completing the work and told the Federal Railroad Administration that it was not going to meet the 2015 deadline, said Ken Lewis, director of positive train control for the railroad.

The company already has begun installing new computers, interfaces and other equipment on about 2,400 of 3,600 trains, and has replaced signalling equipment on 2,400 miles out of 7,500 miles of track needed to meet the deadline.

It will begin field-testing software in a few months on tracks in the Carolinas, loading cars with ballast to test braking mechanisms associated with the system.

Amtrak has been implementing the technology since 2000, and it is already in place throughout the Northeast Corridor and operating in many sections, including in parts of Maryland, according to Craig Schulz, of the national passenger railroad. Amtrak expects to have the technology working throughout the corridor by the 2015 deadline, he said.

For more information on companies in this article

Related Content

  • ‘Free’ power for signs, shelters and so much more
    March 17, 2016
    David Crawford looks at the sunny side of the street. Solar power has been relatively slow in entering the transport sector, but a current blossoming of activity bodes well for the large-scale harnessing of an alternative energy that is zero-emission at source and, in practical terms, infinitely renewable. Traffic management and traveller information systems, and actual vehicles, are all emerging as areas for deployment. Meanwhile roads themselves are being viewed as new-style, fossil fuel-free ‘power stati
  • Delivering accurate bus information
    July 27, 2012
    John C. Toone, King County Metro, describes the transition to an IntelliDrive-led approach to communication and information sharing in line with the introduction of a new bus rapid transit service. King County Metro (KC Metro), which serves Seattle, Bellevue and over 20 suburban towns, has been active in the development of intelligent transportation systems for many years. It has operated a signpost-based AVL system for more than a decade and has used this to provide bus location information to the public o
  • Cross-border enforcement close to becoming a reality
    February 2, 2012
    TISPOL Director Ad Hellemons offers the organisation's perspective on the issue of cross-border enforcement of traffic penalties, the progress that has been made and the potential hurdles yet to be overcome
  • Land Rover demonstrates remote-control Range Rover Sport
    June 18, 2015
    Jaguar Land Rover, part of the UK Autodrive consortium, has demonstrated a remote control Range Rover Sport research vehicle, showing how a driver could drive the vehicle from outside the car via their smartphone. The smartphone app includes control of steering, accelerator and brakes as well as changing from high and low range. This would allow the driver to walk alongside the car, at a maximum speed of 4mph, to manoeuvre their car out of challenging situations safely, or even to negotiate difficult off