Skip to main content

Maryland to implement positive train control

In the wake of the December derailment of a New York passenger train that came off the tracks as it sped too fast into a turn, the Maryland Board of Public Works has approved a US$13 million contract to begin installing positive train control equipment, which uses GPS and radio signalling to react automatically if a collision or derailment is anticipated.
January 13, 2014 Read time: 2 mins
In the wake of the December derailment of a New York passenger train that came off the tracks as it sped too fast into a turn, the Maryland Board of Public Works has approved a US$13 million contract to begin installing positive train control equipment, which uses GPS and radio signalling to react automatically if a collision or derailment is anticipated.

The deadline for full implementation of the system is 2015, but costs and other issues are expected to delay this.

Two rail lines used by MARC commuter trains are owned and operated by the freight railroad 7561 CSX. A third is operated by 2008 Amtrak. Both CSX and Amtrak are installing and testing their own vast networks of switches, signals, radio and communication equipment and operations centres associated with the technology, the companies said.

CSX is years away from completing the work and told the Federal Railroad Administration that it was not going to meet the 2015 deadline, said Ken Lewis, director of positive train control for the railroad.

The company already has begun installing new computers, interfaces and other equipment on about 2,400 of 3,600 trains, and has replaced signalling equipment on 2,400 miles out of 7,500 miles of track needed to meet the deadline.

It will begin field-testing software in a few months on tracks in the Carolinas, loading cars with ballast to test braking mechanisms associated with the system.

Amtrak has been implementing the technology since 2000, and it is already in place throughout the Northeast Corridor and operating in many sections, including in parts of Maryland, according to Craig Schulz, of the national passenger railroad. Amtrak expects to have the technology working throughout the corridor by the 2015 deadline, he said.

Related Content

  • March 15, 2012
    Traffic signal priority initiatives aid better bus travel
    David Crawford investigates traffic signal priority initiatives developing for better bus travel on the US Pacific Coast Transit patronage rises by an average of 35% along commuter corridors equipped with bus rapid transit (BRT) systems, according to the US Department of Transportation’s Federal Transit Administration (FTA). BRT as defined as bus transit enhanced with ITS systems for better services, is winning new passengers attracted by opportunity to avoid increasing fuel costs and traffic congestion.
  • February 25, 2016
    System predicts train delays and informs response
    David Crawford looks into the near-term future for Stockholm’s rail commuters. Swedish rail operator Stockholmståg, which runs commuter services in and around the country’s capital, is claiming a world first with the introduction of its automated Pendelprognosen (commuter prognosis) service. Developed to enable the prediction of delays as much as two hours before they are likely to occur, this offers the operator the scope for much earlier remedial action than previously - for example by filling in the expe
  • May 4, 2016
    Priority boosts ridership and cuts congestion
    Transit priority is proving a win-win in Europe and Australia. David Crawford reports. Technology that integrates with the Australian-originated Sydney Coordinated Adaptive Traffic System (SCATS) is driving bus signal priority and performance analysis initiatives on both sides of the world; in its homeland, with a major deployment in 2015, and in the capital of the Republic of Ireland.
  • July 31, 2012
    Dubai metro - the world's longest automated rail system
    David Crawford reviews the recent opening of Dubai's Red Line. The US$7.6bn Dubai Metro, the Phase I Red Line of which started partial operation in September 2009, will be the world's longest driverless rail system on its planned completion in 2011. With a total length of some 75km, it will then overtake the 68.7km Vancouver SkyTrain and be able to carry over 1.2 million passengers on a typical day.