Skip to main content

Maryland to implement positive train control

In the wake of the December derailment of a New York passenger train that came off the tracks as it sped too fast into a turn, the Maryland Board of Public Works has approved a US$13 million contract to begin installing positive train control equipment, which uses GPS and radio signalling to react automatically if a collision or derailment is anticipated.
January 13, 2014 Read time: 2 mins
In the wake of the December derailment of a New York passenger train that came off the tracks as it sped too fast into a turn, the Maryland Board of Public Works has approved a US$13 million contract to begin installing positive train control equipment, which uses GPS and radio signalling to react automatically if a collision or derailment is anticipated.

The deadline for full implementation of the system is 2015, but costs and other issues are expected to delay this.

Two rail lines used by MARC commuter trains are owned and operated by the freight railroad 7561 CSX. A third is operated by 2008 Amtrak. Both CSX and Amtrak are installing and testing their own vast networks of switches, signals, radio and communication equipment and operations centres associated with the technology, the companies said.

CSX is years away from completing the work and told the Federal Railroad Administration that it was not going to meet the 2015 deadline, said Ken Lewis, director of positive train control for the railroad.

The company already has begun installing new computers, interfaces and other equipment on about 2,400 of 3,600 trains, and has replaced signalling equipment on 2,400 miles out of 7,500 miles of track needed to meet the deadline.

It will begin field-testing software in a few months on tracks in the Carolinas, loading cars with ballast to test braking mechanisms associated with the system.

Amtrak has been implementing the technology since 2000, and it is already in place throughout the Northeast Corridor and operating in many sections, including in parts of Maryland, according to Craig Schulz, of the national passenger railroad. Amtrak expects to have the technology working throughout the corridor by the 2015 deadline, he said.

Related Content

  • October 22, 2014
    Using electricity to power road freight
    Next year sees the start of the first real-life electrified road system for transporting freight. Worldwide freight transportation is predicted to double by 2050 but despite expansion of global rail infrastructure only one third of this additional freight transport can be handled by trains. This means that the largest proportion of freight transport will continue to be by road and as a result, experts expect global CO2 emissions from road freight traffic to more than double by 2050.
  • January 27, 2012
    Improving urban traffic control in Atlanta
    Hugh Colton, Georgia DOT details move to improve urban traffic control in the Atlanta area. With a significant proportion of traffic using freeways and toll-ways, along with a significant investment in roadway infrastructure, urban arterials are often the poor relation when it comes to ITS investment. Hitherto the primary means of Urban Traffic Control (UTC) has been the ubiquitous traffic signal. Many traffic signals still operate in a standalone mode and traffic detection is often broken, leaving the sign
  • June 29, 2018
    Avoiding the call of the wild
    Hitting an animal on a rural road can be fatal for all parties involved – but detecting and avoiding them requires clever technology. Andrew Williams carefully scans the horizon for details. Wildlife-vehicle collisions are an ever-present threat in rural areas around the world, and there is certainly nothing funny about suddenly finding an angry moose in your headlights on a sharp bend. A variety of detection and avoidance systems are currently in use or under development to help prevent your vehicle being
  • October 26, 2017
    USDoT looks at the costs and potential benefits of connected vehicles
    David Crawford looks at latest lessons learned from the trials of connected vehicles in the US. The progress of connected vehicle (CV) technologies takes centre stage among the hot topics highlighted in the September 2017 edition – the first since 2014 – of the ‘ITS Benefits, Costs and Lessons Learned’ survey from the US ITS Joint Program Office (JPO). The organisation is an arm of the US Department of Transportation (USDoT).