Skip to main content

Marwis mobile road sensor on display by Lufft

German measurement technology specialist, G. Lufft is here at the ITS World Congress with a clear message: although stationary road weather information sensors have been in use for many years, even the densest RWIS network can’t cover what Marwis, the innovative mobile road sensor, is capable of.
October 6, 2015 Read time: 2 mins
Nouredine Hafsaoui of Lufft with the mobile weather sensor

German measurement technology specialist, G. 6478 Lufft is here at the ITS World Congress with a clear message: although stationary road weather information sensors have been in use for many years, even the densest RWIS network can’t cover what Marwis, the innovative mobile road sensor, is capable of.

Marwis transforms vehicles into mobile weather stations and delivers data in high-speed. This enables winter service vehicles, school buses, airports and potentially every driver to enhance safety and get reliable information on different surfaces. The sensor detects water film on the road, ice percentage, road status, friction, temperatures and more, providing total control over a route, in terms of safety and of time.

The measuring principle of Marwis is based on the principle of the NIRS31, introduced in 2011. Since then it has also been offered in the embedded passive IRS31-UMB and the active ARS31Pro-UMB sensor. The NIRS31-UMB was the first contactless road weather sensor from Lufft capable of analysing the road below safely from a distance of up to 16 metres. As the company points out, this is especially useful for bridges where the road surface temperatures are cooler than the adjoining road surface and invasive systems require installation bases that are too deep.

“The perfect supplement for our mobile road sensors is our WS700-UMB multifunction weather sensor because it addresses so many needs within one casing,” says Nouredine Hafsaoui. “As visitors to our stand will see, it requires only one cable connection and combines sensors for the detection of air temperature, relative humidity, precipitation intensity and type, air pressure, wind direction, wind velocity and global radiation."

For more information on companies in this article

Related Content

  • Voi adds air quality sensor to V4 e-scooter
    February 8, 2021
    Data collected will be processed through micromobility company's IoT hardware
  • TRW announces next-gen pedestrian protection system
    July 31, 2012
    TRW is announcing its next generation pedestrian protection system (PPS) - a robust and reliable system using a combination of acceleration and pressure sensing technologies to detect a pedestrian impact. "While the auto industry continues its focus on reducing injuries in single and multiple vehicle crashes and reductions in deaths and injuries have been realised in developed markets, pedestrian fatalities continue to increase globally," said Peter Lake, executive vice president of sales and business devel
  • Australia's ground breaking average speed enforcement
    February 1, 2012
    The speed enforcement system on the Hume Highway in Australia combines both spot and point-to-point solutions. Here, Redflex's Peter Whyte discusses its implementation. The Australian State of Victoria has achieved notable success in reducing casualty rates since launching a three-pronged road accident prevention initiative in the late-1980s.
  • Cooperative infrastructure systems waiting for the go ahead
    February 3, 2012
    Despite much research and technological promise, progress towards cooperative infrastructure system deployment is still slow. Here, Robert Cone and John Miles take a considered look at how and when it might come about. From a systems engineering viewpoint it looks logical and inevitable that vehicles should be communicating between themselves and with the road infrastructure. But seen from a business viewpoint the case is not proven.