Skip to main content

LRC evaluates headlight systems to improve night driving

Through its Transportation Lighting and Safety program, the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is evaluating the potential for new lighting technologies and approaches to improve driving safety at night, including new car headlight systems. For the study, vehicle manufacturer Audi AG has provided the LRC with an A7 equipped with adaptive high beam ‘matrix lights’ that allow drivers to benefit from using high beams all the time while selectively dimming a portion of the bea
June 26, 2015 Read time: 3 mins
Through its Transportation Lighting and Safety program, the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is evaluating the potential for new lighting technologies and approaches to improve driving safety at night, including new car headlight systems.

For the study, vehicle manufacturer 2125 Audi AG has provided the LRC with an A7 equipped with adaptive high beam ‘matrix lights’ that allow drivers to benefit from using high beams all the time while selectively dimming a portion of the beam in the direction of other drivers to prevent glare. In the Audi system, the beam pattern is split into numerous individual light-emitting diodes (LEDs) arranged in a grid or matrix that adapts to the surroundings in real-time. The lighting system is being evaluated by LRC researchers this June.

The LRC earlier studied adaptive high beams as part of a project for the 834 National Highway Traffic Safety Administration (NHTSA) that resulted in a report to Congress on nighttime glare and driving performance. Michael Perel, retired chief of the NHTSA Human Factors Division who initiated the project, said, “At that time, because of driver glare complaints and high nighttime crash rates, we wanted to investigate whether dynamically changing the forward light distribution in response to real-time road and traffic conditions could provide drivers with increased seeing distance without causing increased glare. The study did find potential benefits with this concept, variations of which are now being implemented by Audi and other manufacturers.”

LRC’s research for NHTSA demonstrated that forward visibility under adaptive high-beam systems was comparable to that under high beams, while disability and discomfort glare for oncoming drivers were comparable to levels experienced when facing low beams. The results of a recently published LRC study of driver visual performance suggest that nighttime crashes might be reduced up to seven per cent when adaptive high beams are used, relative to low-beam headlights.

Current requirements for vehicle forward lighting in the US specify the photometric performance of low- and high-beam headlight patterns, and vehicles are required to have a set of low-beam and a set of high-beam headlights conforming to these specifications. Adaptive high beams have not been used on vehicles in the US because the modifications to the high-beam beam pattern result in a pattern of illumination that does not conform with either the high- or the low-beam performance standards.

“Our expectation is that testing at Rensselaer of the Audi MatrixBeam system used in Europe will help ongoing standards development efforts in the US,” said Stephan Berlitz, head of Development, Lighting Functions and Innovations at Audi. “We believe the introduction of this technology in the US would be very well-received by customers, just as it has been in Europe and elsewhere, so we are happy to do all that we can to support standards and test procedure development for the US market.”

For more information on companies in this article

Related Content

  • High-speed road assessment vehicle launches at Intertraffic
    February 8, 2016
    WDM, the UK’s leading manufacturer and provider of highway survey and monitoring equipment, will be exhibiting its RAV (road assessment vehicle) for the first time at Intertraffic Amsterdam. The RAV carries out high-speed data acquisition and recording of surface conditions, including measurement of radius of curvature, gradient and crossfall; the automatic recognition of surface cracking; plus geometric longitudinal profile, accurate at speeds down to 0kph.
  • Developments in software visualisation packages
    February 3, 2012
    Adrian Greeman looks at developments in software visualisation packages. The capacity to make visualisations has been growing in importance over the last decade, and is now a well-accepted part of consultations and client presentations. But making high-quality images of projects is still a major undertaking and larger consultancies employ specialist departments to do so. Costs are coming down but it can still take a while, and some high-capacity hardware, to produce realistic renderings from drawings and 3D
  • London may trial Dutch-style roundabouts
    April 30, 2013
    Roundabouts similar to those used in the Netherlands, which separate cyclists from cars and give them priority, could be used in London as early as next year, subject to government approval, according to Transport for London (TfL). TfL has begun a major cycle safety research project to trial new and innovative junction layouts and traffic technology that, if successful, could be introduced in London and potentially more widely across the UK. The trials, which are being carried out for TfL by the Transport R
  • Smartphone fleet driver performance management service
    October 23, 2012
    GreenRoad, UK provider of driver performance management services, has introduced what it says is the world’s first smartphone-based driver performance solution for fleets. Encompassing several key technological and engineering breakthroughs, GreenRoad Smartphone Edition, code-names Asimov, is available now in beta for Android devices. GreenRoad Smartphone Edition uses smartphone native functionality, including GPS and built-in accelerometers, to eliminate the need for a professionally installed telematics d