Skip to main content

LRC evaluates headlight systems to improve night driving

Through its Transportation Lighting and Safety program, the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is evaluating the potential for new lighting technologies and approaches to improve driving safety at night, including new car headlight systems. For the study, vehicle manufacturer Audi AG has provided the LRC with an A7 equipped with adaptive high beam ‘matrix lights’ that allow drivers to benefit from using high beams all the time while selectively dimming a portion of the bea
June 26, 2015 Read time: 3 mins
Through its Transportation Lighting and Safety program, the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is evaluating the potential for new lighting technologies and approaches to improve driving safety at night, including new car headlight systems.

For the study, vehicle manufacturer 2125 Audi AG has provided the LRC with an A7 equipped with adaptive high beam ‘matrix lights’ that allow drivers to benefit from using high beams all the time while selectively dimming a portion of the beam in the direction of other drivers to prevent glare. In the Audi system, the beam pattern is split into numerous individual light-emitting diodes (LEDs) arranged in a grid or matrix that adapts to the surroundings in real-time. The lighting system is being evaluated by LRC researchers this June.

The LRC earlier studied adaptive high beams as part of a project for the 834 National Highway Traffic Safety Administration (NHTSA) that resulted in a report to Congress on nighttime glare and driving performance. Michael Perel, retired chief of the NHTSA Human Factors Division who initiated the project, said, “At that time, because of driver glare complaints and high nighttime crash rates, we wanted to investigate whether dynamically changing the forward light distribution in response to real-time road and traffic conditions could provide drivers with increased seeing distance without causing increased glare. The study did find potential benefits with this concept, variations of which are now being implemented by Audi and other manufacturers.”

LRC’s research for NHTSA demonstrated that forward visibility under adaptive high-beam systems was comparable to that under high beams, while disability and discomfort glare for oncoming drivers were comparable to levels experienced when facing low beams. The results of a recently published LRC study of driver visual performance suggest that nighttime crashes might be reduced up to seven per cent when adaptive high beams are used, relative to low-beam headlights.

Current requirements for vehicle forward lighting in the US specify the photometric performance of low- and high-beam headlight patterns, and vehicles are required to have a set of low-beam and a set of high-beam headlights conforming to these specifications. Adaptive high beams have not been used on vehicles in the US because the modifications to the high-beam beam pattern result in a pattern of illumination that does not conform with either the high- or the low-beam performance standards.

“Our expectation is that testing at Rensselaer of the Audi MatrixBeam system used in Europe will help ongoing standards development efforts in the US,” said Stephan Berlitz, head of Development, Lighting Functions and Innovations at Audi. “We believe the introduction of this technology in the US would be very well-received by customers, just as it has been in Europe and elsewhere, so we are happy to do all that we can to support standards and test procedure development for the US market.”

For more information on companies in this article

Related Content

  • Indra leads European autonomous driving project
    November 17, 2016
    Spain-based consulting and technology company Indra is leading a project that will test autonomous driving on European roads, mainly in the metropolitan areas of Lisbon, Madrid and Paris. These are the three largest cities in the Atlantic Core Network Corridor, which comprises roads that are regarded as priorities for developing Europe's transport infrastructure. Spain's Traffic Department, the Polytechnic University of Madrid, Portugal's National Road Safety Authority, the University of Coimbra, the Ped
  • Lowering the barriers to combined control rooms
    March 29, 2017
    Integrating control rooms can improve traffic management, security and emergency response without excessive cost or compromising privacy. In the wake of the recent terrorist events in France and Germany where the transport system was exploited with deadly consequences, many governments and agencies are reviewing the security arrangements – particularly around popular and high profile events. Increasing security in transport systems that must remain accessible to the general public will not be easy but in ma
  • Transport problems need ''strong action from policymakers”
    June 7, 2012
    Taking advantage of the attendance of the heads of ITS Asia-Pacific, ITS America, Ertico – ITS Europe, and ITS Malaysia as the host nation of the recent 12th ITS Asia-Pacific Forum in Kuala Lumpur in April, ITS International initiated a round table discussion on the big ITS issues confronting the individual regions. For such a diverse collection of advanced and emerging nations spanning the globe, in terms of the advancement of ITS, a common single issue emerges above all others
  • Intelligent parking guidance relieves congestion, reduces costs
    July 24, 2012
    O R Tambo International Airport, near the city of Johannesburg, is the largest airport in Africa. It serves as the primary airport for domestic and international travel to/from South Africa and is one of 10 airports operated by Airports Company South Africa (ACSA). This airport places a massive demand on road infrastructure and parking facilities since a majority of travellers get to the airport by motor vehicle. The demand for parking left many people searching for a parking space for eight minutes or more