Skip to main content

LRC evaluates headlight systems to improve night driving

Through its Transportation Lighting and Safety program, the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is evaluating the potential for new lighting technologies and approaches to improve driving safety at night, including new car headlight systems. For the study, vehicle manufacturer Audi AG has provided the LRC with an A7 equipped with adaptive high beam ‘matrix lights’ that allow drivers to benefit from using high beams all the time while selectively dimming a portion of the bea
June 26, 2015 Read time: 3 mins
Through its Transportation Lighting and Safety program, the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is evaluating the potential for new lighting technologies and approaches to improve driving safety at night, including new car headlight systems.

For the study, vehicle manufacturer 2125 Audi AG has provided the LRC with an A7 equipped with adaptive high beam ‘matrix lights’ that allow drivers to benefit from using high beams all the time while selectively dimming a portion of the beam in the direction of other drivers to prevent glare. In the Audi system, the beam pattern is split into numerous individual light-emitting diodes (LEDs) arranged in a grid or matrix that adapts to the surroundings in real-time. The lighting system is being evaluated by LRC researchers this June.

The LRC earlier studied adaptive high beams as part of a project for the 834 National Highway Traffic Safety Administration (NHTSA) that resulted in a report to Congress on nighttime glare and driving performance. Michael Perel, retired chief of the NHTSA Human Factors Division who initiated the project, said, “At that time, because of driver glare complaints and high nighttime crash rates, we wanted to investigate whether dynamically changing the forward light distribution in response to real-time road and traffic conditions could provide drivers with increased seeing distance without causing increased glare. The study did find potential benefits with this concept, variations of which are now being implemented by Audi and other manufacturers.”

LRC’s research for NHTSA demonstrated that forward visibility under adaptive high-beam systems was comparable to that under high beams, while disability and discomfort glare for oncoming drivers were comparable to levels experienced when facing low beams. The results of a recently published LRC study of driver visual performance suggest that nighttime crashes might be reduced up to seven per cent when adaptive high beams are used, relative to low-beam headlights.

Current requirements for vehicle forward lighting in the US specify the photometric performance of low- and high-beam headlight patterns, and vehicles are required to have a set of low-beam and a set of high-beam headlights conforming to these specifications. Adaptive high beams have not been used on vehicles in the US because the modifications to the high-beam beam pattern result in a pattern of illumination that does not conform with either the high- or the low-beam performance standards.

“Our expectation is that testing at Rensselaer of the Audi MatrixBeam system used in Europe will help ongoing standards development efforts in the US,” said Stephan Berlitz, head of Development, Lighting Functions and Innovations at Audi. “We believe the introduction of this technology in the US would be very well-received by customers, just as it has been in Europe and elsewhere, so we are happy to do all that we can to support standards and test procedure development for the US market.”

For more information on companies in this article

Related Content

  • Growing market for advanced driver assistance systems
    June 8, 2015
    Analysis from Research and Markets forecasts the global ADAS market to grow at a CAGR of 24.97 per cent over the period 2014-2019. ADAS are systems that support, complement, or substitute the driver of a vehicle. They use radar and cameras to assist the drivers by providing real-time information about the surroundings. These systems help drivers to avoid collisions and accidents. OEMs are focusing on adopting advanced safety features such as ADAS because of growing government regulations focused on the s
  • ITS America, automakers respond to Rubio-Booker 5.9 GHz spectrum legislation
    June 23, 2014
    The Intelligent Transportation Society of America (ITS America) and US automakers have responded to the announcement on legislation introduced by US Senators Marco Rubio and Cory Booker that would set deadlines on the Federal Communications Commission (FCC) for developing and publishing a test plan for the use of unlicensed devices in the 5.9 GHz band. The senators introduced S. 2505, the Wi-Fi Innovation Act, legislation to expand unlicensed spectrum use by requiring the Federal Communications Commissio
  • Alcohol interlocks aid drink drive adherence
    October 28, 2016
    The use of alcohol interlocks to prevent drink driving and change driver behaviour is gaining ground around the world but needs greater buy-in from authorities as Colin Sowman discovers. The often repeated mantra says that prevention is better than cure - and none more so than in the case of drink-driving. The introduction of the breathalyser provided an objective indication of alcohol consumption instead of having drivers touch their nose or walk in a straight line. Initially breathalysers were used as a r
  • One eye on the future
    December 12, 2013
    Mobileye’s Itay Gat discusses the evolution of monocular solutions for assisted and autonomous driving with Jason Barnes. Founded in 1999, Israeli company Mobileye manufactures and supplies advanced driver assistance systems (ADAS) based on its EyeQ family of systems-on-chips for image processing for solutions such as lane sensing, traffic sign recognition, vehicle and pedestrian detection. Its products are used by both the OEM and aftermarket sectors. The company’s visual interpretation algorithms drive