Skip to main content

LRC evaluates headlight systems to improve night driving

Through its Transportation Lighting and Safety program, the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is evaluating the potential for new lighting technologies and approaches to improve driving safety at night, including new car headlight systems. For the study, vehicle manufacturer Audi AG has provided the LRC with an A7 equipped with adaptive high beam ‘matrix lights’ that allow drivers to benefit from using high beams all the time while selectively dimming a portion of the bea
June 26, 2015 Read time: 3 mins
Through its Transportation Lighting and Safety program, the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is evaluating the potential for new lighting technologies and approaches to improve driving safety at night, including new car headlight systems.

For the study, vehicle manufacturer 2125 Audi AG has provided the LRC with an A7 equipped with adaptive high beam ‘matrix lights’ that allow drivers to benefit from using high beams all the time while selectively dimming a portion of the beam in the direction of other drivers to prevent glare. In the Audi system, the beam pattern is split into numerous individual light-emitting diodes (LEDs) arranged in a grid or matrix that adapts to the surroundings in real-time. The lighting system is being evaluated by LRC researchers this June.

The LRC earlier studied adaptive high beams as part of a project for the 834 National Highway Traffic Safety Administration (NHTSA) that resulted in a report to Congress on nighttime glare and driving performance. Michael Perel, retired chief of the NHTSA Human Factors Division who initiated the project, said, “At that time, because of driver glare complaints and high nighttime crash rates, we wanted to investigate whether dynamically changing the forward light distribution in response to real-time road and traffic conditions could provide drivers with increased seeing distance without causing increased glare. The study did find potential benefits with this concept, variations of which are now being implemented by Audi and other manufacturers.”

LRC’s research for NHTSA demonstrated that forward visibility under adaptive high-beam systems was comparable to that under high beams, while disability and discomfort glare for oncoming drivers were comparable to levels experienced when facing low beams. The results of a recently published LRC study of driver visual performance suggest that nighttime crashes might be reduced up to seven per cent when adaptive high beams are used, relative to low-beam headlights.

Current requirements for vehicle forward lighting in the US specify the photometric performance of low- and high-beam headlight patterns, and vehicles are required to have a set of low-beam and a set of high-beam headlights conforming to these specifications. Adaptive high beams have not been used on vehicles in the US because the modifications to the high-beam beam pattern result in a pattern of illumination that does not conform with either the high- or the low-beam performance standards.

“Our expectation is that testing at Rensselaer of the Audi MatrixBeam system used in Europe will help ongoing standards development efforts in the US,” said Stephan Berlitz, head of Development, Lighting Functions and Innovations at Audi. “We believe the introduction of this technology in the US would be very well-received by customers, just as it has been in Europe and elsewhere, so we are happy to do all that we can to support standards and test procedure development for the US market.”

For more information on companies in this article

Related Content

  • Automakers, safety advocates, ITS community welcome action on V2V technology
    December 14, 2016
    A coalition of US automakers, highway safety advocates and intelligent transportation organizations welcome the release of the Department of Transportation's notice of proposed rulemaking (NPRM) to establish an interoperable platform for vehicle-to-vehicle (V2V) communications in new vehicles to provide safety and mobility benefits. Citing an enormous potential to reduce crashes on US roads, the US Department of Transportation believes the proposed rule that would advance the deployment of connected vehi
  • Improving driver information, making in-vehicle systems a reality
    January 26, 2012
    Scott J. McCormick, president of the Connected Vehicle Trade Association, considers what we have to do next to make the more widespread deployment of automotive telematics a reality
  • Reduced street lighting has no effect on road casualties and crime, says study
    July 29, 2015
    Reduced street lighting at night has no impact on road collisions or crime, says a study, led by the London School of Hygiene & Tropical Medicine in partnership with University College London and published in the Journal of Epidemiology and Community Health. Many local authorities in England and Wales have reduced street lighting at night to save money and reduce carbon emissions. According to the UK’s Automobile Association (AA), its 2014 research showed that although night-time accidents in bad weat
  • HDR predicts an adaptable and flexible future for roadways
    December 19, 2016
    HDR consultants, Brian Swindell and Bernie Arseanea, consider managed lanes’ untapped potential. It is no surprise that corridor planning continues to challenge agencies and owners as demand continues to surpass roadway capacity.