Skip to main content

Lighting Research Center – ‘not all lighting systems perform equally well’

The rapid development of lighting technologies, particularly solid-state systems using light emitting diodes (LEDs), has opened a universe of new possibilities as well as new questions about roadway lighting in the US, which for decades has been dominated by the use of high pressure sodium (HPS) lamps. Other light source technologies have also been angling for roadway market share. In response to a need for objective technical information about new types of roadway lighting among transportation agencies
June 13, 2014 Read time: 3 mins
The rapid development of lighting technologies, particularly solid-state systems using light emitting diodes (LEDs), has opened a universe of new possibilities as well as new questions about roadway lighting in the US, which for decades has been dominated by the use of high pressure sodium (HPS) lamps. Other light source technologies have also been angling for roadway market share.

In response to a need for objective technical information about new types of roadway lighting among transportation agencies, the US 856 Transportation Research Board (TRB), part of the National Academies, initiated a project to evaluate new lighting technologies and identify new metrics for comparison. Lighting Research Center (LRC) scientists John Bullough, who served as principal investigator and Leora Radetsky co-authored the report, entitled Analysis of New Highway Lighting Technologies. The LRC is part of Rensselaer Polytechnic Institute, the nation’s oldest technological research university.

A major challenge in assessing new roadway lighting technologies is that information for different systems is given in different forms, making comparisons difficult. Bullough and Radetsky systematically analysed the performance of a number of representative luminaires of each type, and developed a consistent data sheet format, allowing direct comparisons.

They found that many commercially available LED, ceramic metal halide, and plasma discharge roadway lighting systems can meet existing standards for lighting collector roads and freeways, achieving comparable or greater pole spacing than HPS systems and in many cases, resulting in lower energy use.  

Importantly, say Bullough and Radetsky, not all systems of each type performed equally well. This underscores the importance of developing consistent data reporting formats such as those in their report.

The authors found that pole height was an important factor in the overall effectiveness of the roadway lighting system. A metric developed by the LRC, called luminaire system application efficacy (LSAE), can be used to optimise pole height and spacing to achieve optimal economic performance of different roadway lighting designs. Bullough and Radetsky also recommend that transportation agencies begin considering new benefit metrics for roadway lighting including photometric quantities based on mesopic vision, brightness perception and visual comfort.

According to Bullough, "Technologies such as LEDs are becoming mainstream choices for roadway lighting. The findings in our report can help agencies make better decisions as they face these choices."

For more information on companies in this article

Related Content

  • Researchers devise snow ploughing algorithm
    September 16, 2014
    Canadian researchers Olivier Quirion-Blais, Martin Trépanier and André Langevin have developed an algorithm to determine the most efficient routes for snow ploughs and gritters. Snow plough routing has always been something of a ‘black art’: to direct a fleet of show plough to clear priority roads without having the same road cleared several times while others are left untreated. Increasingly, GPS is being used to track the routes the clearing vehicles have taken but until now it has not been possible to ta
  • The role of GIS in climate change resiliency
    May 29, 2014
    Climate change will pose global and local challenges and that includes risks to the transportation infrastructure. Climate change adaptation and resiliency has captured the attention of the transportation community for some time now. Because transportation infrastructure is often designed to last for 30, 50, or 100 years or even longer, transportation professionals are concerned not only about the impact on our existing investments, but also how to design more durable transportation systems for the future
  • Affordable and versatile traffic data
    January 20, 2012
    Houston TranStar, which has been collecting travel time and segment speed data using vehicle probe data since 1995, has an extensive coverage area that envelops most local commuters' daily freeway routes. However, expanding the existing Automated Vehicle Identification (AVI) system would be cost-prohibitive except for high-volume freeways. The partners of the Houston TranStar consortium needed a new method to measure speeds and travel times on arterial roadway systems and rural freeways. Instead of using co
  • Nervous about AV travel? You’ll get the Gist
    February 4, 2025
    Help is on the way for those anxious folk who will accept rides from automated vehicles but may feel uncomfortable doing so, reports David Arminas