Skip to main content

Kistler WIM innovation wins accreditation

A major weigh-in-motion (WIM) innovation being featured here at the ITS World Congress by Kistler has already won accreditation from the International Organisation of Metrology (OIML). To address the ever increasing problem of road surface damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles.
October 7, 2015 Read time: 2 mins
Tomáš Pospíšek of Kistler

A major weigh-in-motion (WIM) innovation being featured here at the ITS World Congress by 657 Kistler has already won accreditation from the International Organisation of Metrology (OIML).

To address the ever increasing problem of road surface damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles.

However, Kistler says the chain has been missing the last link that would allow road authorities to implement automatic enforcement based on vehicle weight data or to introduce toll-by-weight models in a free-flow environment. This growing demand for certified WIM systems compliant with international standards has been recently met by Kistler’s OIML-certified WIM technology.

The company is the first WIM manufacturer to have received the International Organisation of Metrology (OIML) R-134 certificate for vehicle weighing with strip sensors. Supported by this certificate, Kistler WIM systems based on maintenance-free Lineas quartz WIM sensors and the Kistler WIM data logger can now be used for legal applications.

In the world of international WIM standards, Kistler says there is a significant difference in the definition of the accuracy classes. While COST323 and ASTM E1318 state that only 95% of WIM measurements need to fulfil the declared accuracy, the OIML requires all (100%) measurements to be in the requested accuracy class.

The Kistler WIM system meets OIML accuracy F5 meaning that for initial verification all errors are below ±2.5 % and during standard operation the system has a measurement error smaller than ±5%.

For more information on companies in this article

Related Content

  • Managing congestion, better information changes perceptions
    January 31, 2012
    Kapsch's Dietrich Leihs talks about the true fundamentals of urban pricing. In some Italian and German towns and cities, the solution to congestion is an outright ban on certain types of vehicles. As far as Dietrich Leihs is concerned, any attempt to sweeten the pill that is congestion charging is only ever going to be a partial success at best.
  • Enforcement needs automation and communication
    February 1, 2012
    TISPOL's Peter van de Beek questions whether the thought processes which drive enforcement technology development are always the right ones. Peter van de Beek sees an ever-greater role for technology in traffic enforcement but is concerned that the emphasis of technological development and discussion is not always in the right places. 'Old-fashioned' face-to-face policing remains as valid as it ever did, he feels, but adds that there should be greater communication with those engaged at the sharp end of saf
  • Countering falling fuel tax revenue with mileage fees
    April 20, 2016
    Eric G. O’Rear and Wallace E. Tyner look at the benefits of mileage charges and how these might be implemented. Since the early 1900s, taxes on petrol (gasoline) and diesel fuels have been used to finance the construction and maintenance of roadway infrastructure and, in some countries other government spending too. Now, a combination of improved fuel economy, the advent of hybrid and alternative fuelled vehicles and a reluctance in some countries (especially the US) to increase fuel taxes has led to a d
  • Combining weight and speed violation detection
    November 22, 2012
    UK company CA Traffic has combined its Evo8 ANPR camera and Black Cat traffic monitoring technology to provide weigh in motion (WIM) and speed violation detection with high quality ANPR data. Both systems are configured with the local classification scheme, maximum road speed, vehicle speed and weight limits by class. Vehicle data (class, speed and weight) is sent from the Black Cat system to the EVo8, which checks for compliance with the data set for the road. Speed or weight violations cause the system