Skip to main content

Kistler WIM innovation wins accreditation

A major weigh-in-motion (WIM) innovation being featured here at the ITS World Congress by Kistler has already won accreditation from the International Organisation of Metrology (OIML). To address the ever increasing problem of road surface damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles.
October 7, 2015 Read time: 2 mins
Tomáš Pospíšek of Kistler

A major weigh-in-motion (WIM) innovation being featured here at the ITS World Congress by 657 Kistler has already won accreditation from the International Organisation of Metrology (OIML).

To address the ever increasing problem of road surface damage caused by heavy transport, WIM systems employing Kistler quartz sensors have been delivering valuable traffic data for many years. There is also a long tradition in using WIM for preselection of overloaded vehicles.

However, Kistler says the chain has been missing the last link that would allow road authorities to implement automatic enforcement based on vehicle weight data or to introduce toll-by-weight models in a free-flow environment. This growing demand for certified WIM systems compliant with international standards has been recently met by Kistler’s OIML-certified WIM technology.

The company is the first WIM manufacturer to have received the International Organisation of Metrology (OIML) R-134 certificate for vehicle weighing with strip sensors. Supported by this certificate, Kistler WIM systems based on maintenance-free Lineas quartz WIM sensors and the Kistler WIM data logger can now be used for legal applications.

In the world of international WIM standards, Kistler says there is a significant difference in the definition of the accuracy classes. While COST323 and ASTM E1318 state that only 95% of WIM measurements need to fulfil the declared accuracy, the OIML requires all (100%) measurements to be in the requested accuracy class.

The Kistler WIM system meets OIML accuracy F5 meaning that for initial verification all errors are below ±2.5 % and during standard operation the system has a measurement error smaller than ±5%.

For more information on companies in this article

Related Content

  • Authorities select enforce now, pay later option
    October 19, 2015
    Outsouring of enforcement services is on the increase internationally as highway and traffic authorities seek further support in resources and expertise from the private sector. Jon Masters reports. Signs of a significant company making moves into a new market can usually be read as indication of likely growth in that particular sector. Q-Free’s expansion from tolling operations into general traffic enforcement could be viewed as surprising as it is moving into what are relatively mature and consolidating m
  • Debating a cost-effective means of road user charging
    July 20, 2012
    Does GPS/GNSS-based technology provide a cost-effective means of charging or tolling on a national or international level, or are the issues pertaining to effective enforcement an obstacle. Here, leading equipment manufacturers debate the issue.
  • IRD to provide WIM systems and services for FHWA
    October 1, 2015
    International Road Dynamics (IRD) has been awarded a US$4.9 million contract for weigh-in-motion (WIM) systems installation, maintenance and data services by the Federal Highway Administration (FHWA) Office of Infrastructure Research and Development. The contract is a task-order based, indefinite delivery, indefinite quantity agreement covering a sixty-six month period, under which IRD will be issued task orders to provide installation, maintenance, repairs and verification that data collected from the W
  • ITS solutions to keep truck traffic moving
    June 8, 2015
    David Crawford reviews freight management initiatives. Managing truck traffic to minimise its environmental impacts, without adversely impacting on its critical economic role, continues to drive ITS-based solutions in both urban and interurban contexts.