Skip to main content

Kapsch CarrierCom achieves functional addressing for railway communications

Kapsch CarrierCom’s Vienna lab has successfully carried out the first functional addressing call utilising SIP signalling based on the IP multimedia subsystem (IMS). The functional addressing service, also called ‘follow Me’, is one of the key operational features in railway communication networks and is the process of placing a call using a number that refers to the function which a user is performing at a certain time, as opposed to simply identifying the terminal equipment used. The achievement com
June 10, 2016 Read time: 2 mins
81 Kapsch CarrierCom’s Vienna lab has successfully carried out the first functional addressing call utilising SIP signalling based on the IP multimedia subsystem (IMS).

The functional addressing service, also called ‘follow Me’, is one of the key operational features in railway communication networks and is the process of placing a call using a number that refers to the function which a user is performing at a certain time, as opposed to simply identifying the terminal equipment used.

The achievement combines soft phone-based user equipment, IMS capabilities and the service logic hosted within the Service Control Point release 5 (SCP5) application server. Kapsch’s new SCP5 uses standard commercial off-the-shelf hardware and is a convergent Service Delivery Platform (SDP). It enables service centralisation, functional transparency against the underlying network architecture and a smooth transition between current networks and the future full-IP system and is fully enabled for virtualisation, allowing flexible and cost-efficient deployment in railway data centres.

Overall, the system used for the demonstration of functional calls is aligned with the concepts discussed in the ETSI TC RT working group NG2R and the vision outlined in the user requirements and system architecture defined by the UIC project, Future Railway Mobile Communication System (FRMCS).

It acts as a building block for the additional activities planned within the European SHIFT2RAIL project. The proposed transition of the Global System for Mobile Communications – Railway (GSM-R) core systems to IP-based systems offers a number of benefits. It is primarily targeted to be radio technology-independent and offers multi-bearer support. In addition, it will increase reliability and availability, improve safety and reduce costs.

Within the next few years, European railway operators are expected to start to migrate to IP-infrastructure by adopting new technologies and prepare for the migration towards the future railway communication system.

In December 2015, Kapsch became associated member of SHIFT2RAIL and undertook responsibility for carrying out the analysis, specification and implementation of a prototype for a future communication system emergency call under the Innovation Programme 2.

For more information on companies in this article

Related Content

  • Indra ticketing starts in Riyadh
    December 11, 2024
    New system is part of €266m public transit deal in Saudi Arabian capital
  • Tolling faces up to unprecedented challenge
    October 9, 2020
    The next five years are likely to see a number of changes – but the tolling industry will be equal to them, thinks the IBTTA’s Bill Cramer. The best minds in the business are on the case…
  • Nokia celebrates growing ITS presence
    March 20, 2018
    Visitors to the Nokia stand will undoubtedly come away with a new appreciation for the company as a growing global player in intelligent transportation systems (ITS), highway and smart city innovation. And we are not talking about aspirations. Take just one example: Nokia is the networking technology partner for GeneSys on a 10-year contract for Highways England in the UK. Nokia is responsible for delivering an IP/MPLS critical communications network for the National Road Telecommunications System (NRTS
  • The need for a higher voltage power net for vehicles
    June 27, 2012
    Electrification of the automobile is not limited to the electric vehicles (EVs). As a new report from Frost & Sullivan points out, conventional cars of today are partly electric in their own way, with most systems in the vehicle having electrical and electronic connections for better functionality. Certain high-end vehicles possess more than 90 electronic control units (ECUs) to control the various modules within the car, making the car both sophisticated and complicated. However, added functions such as el