Skip to main content

Jeep hackers return to remotely hack Cherokee’s digital systems

Just a year after they caused Chrysler to recall 1.4 million Jeep Cherokee vehicles after showing how they could remotely hijack a jeep’s digital systems over the internet, Charlie Miller and Chris Valasek are back to show how it could get worse. In the 2015 attack, they first toyed with the vehicle’s air conditioning, entertainment system and windscreen wipers, before cutting the transmission and causing the jeep to slowly come to a halt. At the Black Hat USA 2016 conference this week the two automot
August 4, 2016 Read time: 2 mins
RSSJust a year after they caused 1958 Chrysler to recall 1.4 million Jeep Cherokee vehicles after showing how they could remotely hijack a jeep’s digital systems over the internet, Charlie Miller and Chris Valasek are back to show how it could get worse.

In the 2015 attack, they first toyed with the vehicle’s air conditioning, entertainment system and windscreen wipers, before cutting the transmission and causing the jeep to slowly come to a halt.

At the Black Hat USA 2016 conference this week the two automotive cybersecurity researchers will outline new methods of cyber attack against the same Jeep Cherokee they hacked last year.

According to Miller and Valasek, hackers usually inject CAN messages on to the vehicle's network. However, there are often many limitations on what actions the vehicle can be forced to perform when injecting CAN messages. While an attacker may be able to easily change the speedometer while the car is driving, he may not be able to disable the brakes or turn the steering wheel unless the car he is driving meets certain prerequisites, such as travelling below a certain speed.

In their presentation, they plan to discuss how physical, safety critical systems react to injected CAN messages and how these systems are often resilient to this type of manipulation.

They will also outline new methods of CAN message injection which can bypass many of these restrictions and demonstrate the results on the braking, steering, and acceleration systems of an automobile. They end by suggesting ways these systems could be made even more robust in future vehicles.

Related Content

  • September 6, 2017
    Remote remedies help US authorities identify bridge deficiencies
    Every day 185 million vehicles – cars, trucks, school buses, emergency response units - cross one or more of America’s 55,710 'structurally compromised' steel and concrete road bridges, the highest concentration of which are in Iowa (nearly 5,000), Pennsylvania and Oklahoma. Nearly 2,000 of these crossings are located on interstate highways, according to the American Road and Transportation Builders Association's recent analysis of the US Department of Transportation's 2016 National Bridge Inventory.
  • September 28, 2020
    The benefit of Lidar: touch, don’t look
    The benefits of Lidar as a safety device for automobiles rather than as an enabler for AVs are easy to overlook – but Dr Jun Pei of Cepton Technologies tells Adam Hill why that would be a big mistake
  • April 24, 2015
    Report: Invest now in fuel cell vehicles?
    According to IDTechEx, there is divided opinion on future of traction fuel cells in electric vehicles, though few argue any more that they will power the majority of electric vehicles (EVs). Nonetheless some manufacturers are very enthusiastic and now could be the beginning of the end of the trough of disillusionment, indeed the time to invest, as analysed in the IDTechEx report Fuel Cell Electric Vehicles 2015-2030: Land, Water, Air. A comparison of views by IDTechEx) found that Toyota, Nissan, Honda,
  • February 2, 2012
    Pioneering IntelliDrive technologies in Michigan
    Pete Goldin reports on upgrades to the USDOT's Michigan Test Bed, where IntelliDrive technologies are being pioneered