Skip to main content

Jeep hackers return to remotely hack Cherokee’s digital systems

Just a year after they caused Chrysler to recall 1.4 million Jeep Cherokee vehicles after showing how they could remotely hijack a jeep’s digital systems over the internet, Charlie Miller and Chris Valasek are back to show how it could get worse. In the 2015 attack, they first toyed with the vehicle’s air conditioning, entertainment system and windscreen wipers, before cutting the transmission and causing the jeep to slowly come to a halt. At the Black Hat USA 2016 conference this week the two automot
August 4, 2016 Read time: 2 mins
RSSJust a year after they caused 1958 Chrysler to recall 1.4 million Jeep Cherokee vehicles after showing how they could remotely hijack a jeep’s digital systems over the internet, Charlie Miller and Chris Valasek are back to show how it could get worse.

In the 2015 attack, they first toyed with the vehicle’s air conditioning, entertainment system and windscreen wipers, before cutting the transmission and causing the jeep to slowly come to a halt.

At the Black Hat USA 2016 conference this week the two automotive cybersecurity researchers will outline new methods of cyber attack against the same Jeep Cherokee they hacked last year.

According to Miller and Valasek, hackers usually inject CAN messages on to the vehicle's network. However, there are often many limitations on what actions the vehicle can be forced to perform when injecting CAN messages. While an attacker may be able to easily change the speedometer while the car is driving, he may not be able to disable the brakes or turn the steering wheel unless the car he is driving meets certain prerequisites, such as travelling below a certain speed.

In their presentation, they plan to discuss how physical, safety critical systems react to injected CAN messages and how these systems are often resilient to this type of manipulation.

They will also outline new methods of CAN message injection which can bypass many of these restrictions and demonstrate the results on the braking, steering, and acceleration systems of an automobile. They end by suggesting ways these systems could be made even more robust in future vehicles.

Related Content

  • March 1, 2013
    Airborne traffic monitoring - the future?
    A new frontier in the quest to monitor road traffic is opening up… but using airborne drones to reduce the jams comes with some thorny issues. Chris Tindall reports. Imagine if you could rely on a system that provided all the data you needed to regulate traffic flow, route vehicles and respond swiftly to emergencies for a fraction of the cost of piloting a helicopter. That system exists, but as engineers and traffic managers start to explore the potential of unmanned aerial vehicles (UAVs) – more commonly k
  • March 31, 2017
    Smartphone solution for parking performance
    Automated parking offers optimised space utilisation and fewer damage complaints as David Crawford discovers. As cars become smarter, technology designed to make parking them more straightforward is developing in parallel. In turn, it is becoming clear that the places where vehicles spend much of their time will need to respond – more comprehensively than by supporting established aids such as smartphone-based parking location and reservation, or payment for time used.
  • March 31, 2017
    Smartphone solution for parking performance
    Automated parking offers optimised space utilisation and fewer damage complaints as David Crawford discovers. As cars become smarter, technology designed to make parking them more straightforward is developing in parallel. In turn, it is becoming clear that the places where vehicles spend much of their time will need to respond – more comprehensively than by supporting established aids such as smartphone-based parking location and reservation, or payment for time used.
  • April 18, 2012
    EV charging will require increased investment in cyber security systems
    The technology architecture associated with electric vehicle (EV) charging is continuing to evolve as utilities and other key players in the industry ecosystem identify business requirements and risks associated with adding significant new demands on the electrical grid. One of the most pressing challenges is related to securing financial transactions and end-to-end communications throughout the EV charging infrastructure, and a recent report from Pike Research indicates that these areas will be the focus o