Skip to main content

IBM Research boosts Battery 500 project

IBM has announced that two industry leaders, Asahi Kasei and Central Glass, will join its Battery 500 Project team and collaborate on far-reaching research with the potential to accelerate the switch from gasoline to electricity as the primary power source for vehicles. In 2009, IBM Research pioneered a sustainable mobility project to develop lithium-air battery technology capable of powering a family-sized electric car for approximately 500 miles (800 km) on a single charge.
April 23, 2012 Read time: 2 mins
62 IBM has announced that two industry leaders, 5171 Asahi Kasei and 5172 Central Glass, will join its Battery 500 Project team and collaborate on far-reaching research with the potential to accelerate the switch from gasoline to electricity as the primary power source for vehicles.

In 2009, IBM Research pioneered a sustainable mobility project to develop lithium-air battery technology capable of powering a family-sized electric car for approximately 500 miles (800 km) on a single charge.

As partners in the Battery 500 Project, Asahi Kasei and Central Glass bring decades of materials innovation for the automotive industry to the team. They will expand the project's scope and, although the scientific and engineering challenges to its practical implementation are extremely high, exploring several chemistries simultaneously increases the chance of success.

Asahi Kasei, one of Japan's leading chemical manufactures and a leading global supplier of separator membrane for lithium-ion batteries, will use its experience in innovative membrane technology to create a critical component for lithium-air batteries.

Meanwhile, Central Glass, a leading global electrolyte manufacturer for lithium-ion batteries, will use its chemical expertise in this field to create a new class of electrolytes and high-performance additives specifically designed to improve lithium-air batteries.

"These new partners share our vision of electric cars being critical components of building a cleaner, better world, which is far less dependent on oil," said Dr. Winfried Wilcke, IBM's Principle Investigator who initiated the Battery 500 Project. "Their compatible experience, knowledge and commitment to bold innovation in electric vehicle battery technology can help us transfer this research from the lab onto the road."

For more information on companies in this article

Related Content

  • Arup reveals its vision of the future of rail
    July 2, 2014
    Engineering and consulting firm Arup has unveiled its vision of the future of rail travel in the light of trends such as urban population growth, climate change and emerging technologies. The Future of Rail 2050 foresees predictive maintenance of rail lines by robot drones; driverless trains travelling safely at high speed, freight delivered automatically to its destination, and smart technology designed to improve passenger experience and enable ticketless travel. According to Colin Stewart, Global
  • Spark plugs may be replaced by lasers
    May 21, 2012
    For more than 150 years, spark plugs have powered internal combustion engines. Automakers are now one step closer to being able to replace this long-standing technology with laser igniters, which will enable cleaner, more efficient, and more economical vehicles.
  • ITS America’s latest report - vehicle electrification and the smart grid
    November 9, 2012
    The latest report from the Intelligent Transportation Society of America (ITS America), entitled Vehicle Electrification and the Smart Grid - The Supporting Role of Safety and Mobility Services, is to be presented in a webinar hosted by Dr Kenneth Laberteaux, Senior Principal Research Scientist at Toyota Research Institute-North America. The webinar, entitled What’s Driving All This Driving? will be held on 15 November, at 1 p.m. Eastern Time. Click here for more information and to register. The report is
  • Feasibility study to look at use of dynamic wireless power transfer on UK roads
    March 13, 2015
    The UK’s Transport Research Laboratory (TRL) has been commissioned by the Highways Agency to undertake a feasibility study into whether dynamic wireless power transfer (WPT) technology can be used on England’s motorways and major A roads, the Strategic Road Network, to prepare for and potentially encourage, greater EV take-up. This study is the first part in a much larger programme of research and trialling for dynamic WPT technology to be undertaken in the UK. TRL was selected to deliver the feasibility st