Skip to main content

IBM Research boosts Battery 500 project

IBM has announced that two industry leaders, Asahi Kasei and Central Glass, will join its Battery 500 Project team and collaborate on far-reaching research with the potential to accelerate the switch from gasoline to electricity as the primary power source for vehicles. In 2009, IBM Research pioneered a sustainable mobility project to develop lithium-air battery technology capable of powering a family-sized electric car for approximately 500 miles (800 km) on a single charge.
April 23, 2012 Read time: 2 mins
62 IBM has announced that two industry leaders, 5171 Asahi Kasei and 5172 Central Glass, will join its Battery 500 Project team and collaborate on far-reaching research with the potential to accelerate the switch from gasoline to electricity as the primary power source for vehicles.

In 2009, IBM Research pioneered a sustainable mobility project to develop lithium-air battery technology capable of powering a family-sized electric car for approximately 500 miles (800 km) on a single charge.

As partners in the Battery 500 Project, Asahi Kasei and Central Glass bring decades of materials innovation for the automotive industry to the team. They will expand the project's scope and, although the scientific and engineering challenges to its practical implementation are extremely high, exploring several chemistries simultaneously increases the chance of success.

Asahi Kasei, one of Japan's leading chemical manufactures and a leading global supplier of separator membrane for lithium-ion batteries, will use its experience in innovative membrane technology to create a critical component for lithium-air batteries.

Meanwhile, Central Glass, a leading global electrolyte manufacturer for lithium-ion batteries, will use its chemical expertise in this field to create a new class of electrolytes and high-performance additives specifically designed to improve lithium-air batteries.

"These new partners share our vision of electric cars being critical components of building a cleaner, better world, which is far less dependent on oil," said Dr. Winfried Wilcke, IBM's Principle Investigator who initiated the Battery 500 Project. "Their compatible experience, knowledge and commitment to bold innovation in electric vehicle battery technology can help us transfer this research from the lab onto the road."

For more information on companies in this article

Related Content

  • Funding for EV battery recycling research
    April 18, 2012
    Axeon has announced it is one of six British companies to receive funding from the UK's Technology Strategy Board for feasibility studies into the recycling and re-use of batteries for hybrid and electric vehicles. As well as researching the recycling process, the project will look at how to determine end-of-life, which is still a major issue with automotive batteries for both manufacturers and consumers.
  • Digital Light Processing transforms travel information
    July 19, 2012
    David Crawford investigates the potential of new projection technology. Fifty years on from its invention of the microchip, US company Texas Instruments (TI) has compressed the technology into a surface area of just 4.3mm. As such, it forms the heart of a new Pico Digital Light Processing (DLP) system that is set to transform travel information delivery for millions of users on the move - by making it projectable.
  • Hydrogen: transportation's silver bullet?
    June 22, 2021
    As the quest for carbon-neutrality becomes a key political and economic driver, everyone is on the lookout for new sources of energy - so perhaps hydrogen’s time has come
  • The afterlife of spent electric vehicle batteries
    April 20, 2012
    Earlier this year, General Motors signed a definitive agreement with ABB Group to identify joint research and development projects that would reuse Chevrolet Volt battery systems, which will have up to 70 per cent of life remaining after their automotive use is exhausted. Recent research conducted by GM predicts that secondary use of 33 Volt batteries will have enough storage capacity to power up to 50 homes for about four hours during a power cut.