Skip to main content

Hyperloop One completes inaugural test run

Hyperloop One successfully completed its second phase of testing, achieving 192 mph and travelling almost the full distance of the 500-metre DevLoop track in the Nevada desert, in a tube depressurised down to the equivalent of air at 200,000 feet above sea level. The Hyperloop One XP-1, the company’s first-generation pod, accelerated for 300 metres and glided above the track using magnetic levitation before braking and coming to a gradual stop.
August 7, 2017 Read time: 1 min
8535 Hyperloop One successfully completed its second phase of testing, achieving 192 mph and travelling almost the full distance of the 500-metre DevLoop track in the Nevada desert, in a tube depressurised down to the equivalent of air at 200,000 feet above sea level.


The Hyperloop One XP-1, the company’s first-generation pod, accelerated for 300 metres and glided above the track using magnetic levitation before braking and coming to a gradual stop.

All components of the system were successfully tested, including the highly efficient electric motor, advanced controls and power electronics, custom magnetic levitation and guidance, pod suspension and vacuum system.

With Hyperloop One, passengers and cargo are loaded into a pod, which accelerates gradually via electric propulsion through a low-pressure tube. The pod quickly lifts above the track using magnetic levitation and glides at airline speeds for long distances due to ultra-low aerodynamic drag.

For more information on companies in this article

Related Content

  • IN FOCUS: What Lidar does next
    March 16, 2023
    Automotive, tolling, robotics – outside of traffic, road safety and autonomous vehicles, what applications will move the dial in terms of Lidar during 2023? Quite a few, finds Adam Hill
  • The future of in-vehicle navigation systems
    February 3, 2012
    TRL's Alan Stevens looks at the evolution and future prospects of in-vehicle navigation devices. Human-Machine Interaction (HMI) plays a crucial role in the safety of vehicles on our roads. Until we achieve full automation (and that's a debatable prospect anyway) a driver's interaction with the vehicle - all the controls, information and systems - holds a pivotal role in safe driving.
  • SICK launches all-weather 3D sensor system for traffic management
    January 29, 2018
    Sick has launched the TIC502 Lidar sensor traffic and warning system which is said to scan vehicles up to 100 times a second with 99% accuracy to generate a 3D profile of each vehicle. The all-weather solution can be used for counting fast lane, free-flowing and static traffic to facilitate real-time management and electronic toll charge assessment of all vehicle types according to standard international transport classifications. TIC502 has a range of up to 40 metres and minimum mounting height of 1.5
  • New analysis finds speed cameras may create bad driving behaviour
    October 28, 2015
    Using more than one billion miles of driving behaviour data, collected over three years (2011-2014) and including 8,809 separate journeys in 5,353 vehicles, Wunelli, a LexisNexis company, has revealed the most frequent braking black spots across the UK created by speed cameras, based on motorists braking excessively just before speed cameras to avoid being caught. Eighty per cent of all the UK speed cameras investigated had hard braking activity, with braking increasing six fold on average at these loca