Skip to main content

Hyperloop One completes Hyperloop full systems test

Hyperloop One has completed its first full systems Hyperloop test in a vacuum environment at the company’s test track in the Nevada desert. The vehicle coasted above the first portion of the track for 5.3 seconds using magnetic levitation and reached nearly 2Gs of acceleration, while achieving the Phase 1 target speed of 70mph. The company is now entering the next campaign of testing, which will target speeds of 250 mph. Hyperloop One tested all the system's components, including its highly efficient motor,
July 17, 2017 Read time: 3 mins
8535 Hyperloop One has completed its first full systems Hyperloop test in a vacuum environment at the company’s test track in the Nevada desert.


The vehicle coasted above the first portion of the track for 5.3 seconds using magnetic levitation and reached nearly 2Gs of acceleration, while achieving the Phase 1 target speed of 70mph. The company is now entering the next campaign of testing, which will target speeds of 250 mph.

Hyperloop One tested all the system's components, including its highly efficient motor, vehicle suspension, magnetic levitation, electromagnetic braking, vacuum pumping system and more, proving the full system's components operate successfully as a single integrated unit in a vacuum.

In addition, Hyperloop One also unveiled the prototype of its Pod that will work within the integrated system. Using electromagnetic propulsion and magnetic levitation, the Pod will transport passengers and cargo inside the tube.

"Hyperloop One will move people and things faster than at any other time in the world," said Shervin Pishevar, co-founder and executive chairman of Hyperloop One. "With Hyperloop One, the world will be cleaner, safer and faster. It's going to make the world a lot more efficient and will impact the ways our cities work, where we live and where we work. We'll be able to move between cities as if cities themselves are metro stops."

In response to the announcement of the testing, Philippa Oldham, head of Transport and Manufacturing at the 5025 Institution of Mechanical Engineers, said that, while the completion of the first trial must be very exciting for the project team, there seems to be some gaps in the information regarding the risks and safety of the system itself. There remains a challenge of cost both in terms of design, production and maintainability with figures initially quoted from the team already escalating.

“Building a sophisticated, evacuated tube system that is elevated on columns and aligned to a standard suitable for 700mph operation will definitely be a challenge,” she said.

“As the distance of the trials increase there will be many engineering problems to solve including that of managing track alignment. In the UK we would not be able to use any existing transport corridors at these speeds due to their lateral curvature. In addition travelling at those speeds means that any fault in the system would mean everyone on board would die - just as you would at 60,000 metres if you were rapidly decompressed. The safety systems will be critical to this technology ever being viable.

“Whilst this was a successful first trial the speeds were still relatively low and so it will be interesting to watch the development of this programme.”

Related Content

  • February 1, 2012
    Time for a rethink on road user charging
    There is no value in further US VMT charging trials, except to delay the inevitable. These trials should end after completion of the University of Iowa's National Evaluation of a Mileage-based Road User Charge. There is far greater promise in unleashing private operators to commence profitable, non-tolling services, then using these for toll assessment and collection as fuel distributors are currently used to collect fuel taxation. Bern Grush writes
  • March 15, 2023
    How the metaverse will transform the future of mobility
    Digital development has never been as rapid and disruptive as it is today. The metaverse and technologies such as AR and MR will transform our lives and businesses - including transport planning and shaping the mobility ecosystem, says Christian Haas of UMovity
  • October 14, 2016
    Xerox considers smarter city solutions
    Richard Harris from Xerox considers how to alleviate inner-city traffic congestion. Whether travelling for business or leisure, wasting unnecessary time during your journey is a common source of frustration. From dealing with congestion, hold-ups caused by broken down vehicles or crashes to roadworks and other types of delay, wasting time is almost guaranteed to make most people experience additional stress before they even get to where they want to go.
  • January 24, 2017
    Harnessing the strengths of CMOS for ITS applications
    Sony’s Arnaud Destruels explains the benefits of CMOS sensors for ITS applications. In the transport sector roadside, trackside and platform cameras were devices for viewing and assessing a situation while individual sensors did all the clever stuff like traffic counting, speed calculation, queue lengths, signal status and so on. Well, not any more.