Skip to main content

Hyperloop One completes Hyperloop full systems test

Hyperloop One has completed its first full systems Hyperloop test in a vacuum environment at the company’s test track in the Nevada desert. The vehicle coasted above the first portion of the track for 5.3 seconds using magnetic levitation and reached nearly 2Gs of acceleration, while achieving the Phase 1 target speed of 70mph. The company is now entering the next campaign of testing, which will target speeds of 250 mph. Hyperloop One tested all the system's components, including its highly efficient motor,
July 17, 2017 Read time: 3 mins
8535 Hyperloop One has completed its first full systems Hyperloop test in a vacuum environment at the company’s test track in the Nevada desert.


The vehicle coasted above the first portion of the track for 5.3 seconds using magnetic levitation and reached nearly 2Gs of acceleration, while achieving the Phase 1 target speed of 70mph. The company is now entering the next campaign of testing, which will target speeds of 250 mph.

Hyperloop One tested all the system's components, including its highly efficient motor, vehicle suspension, magnetic levitation, electromagnetic braking, vacuum pumping system and more, proving the full system's components operate successfully as a single integrated unit in a vacuum.

In addition, Hyperloop One also unveiled the prototype of its Pod that will work within the integrated system. Using electromagnetic propulsion and magnetic levitation, the Pod will transport passengers and cargo inside the tube.

"Hyperloop One will move people and things faster than at any other time in the world," said Shervin Pishevar, co-founder and executive chairman of Hyperloop One. "With Hyperloop One, the world will be cleaner, safer and faster. It's going to make the world a lot more efficient and will impact the ways our cities work, where we live and where we work. We'll be able to move between cities as if cities themselves are metro stops."

In response to the announcement of the testing, Philippa Oldham, head of Transport and Manufacturing at the 5025 Institution of Mechanical Engineers, said that, while the completion of the first trial must be very exciting for the project team, there seems to be some gaps in the information regarding the risks and safety of the system itself. There remains a challenge of cost both in terms of design, production and maintainability with figures initially quoted from the team already escalating.

“Building a sophisticated, evacuated tube system that is elevated on columns and aligned to a standard suitable for 700mph operation will definitely be a challenge,” she said.

“As the distance of the trials increase there will be many engineering problems to solve including that of managing track alignment. In the UK we would not be able to use any existing transport corridors at these speeds due to their lateral curvature. In addition travelling at those speeds means that any fault in the system would mean everyone on board would die - just as you would at 60,000 metres if you were rapidly decompressed. The safety systems will be critical to this technology ever being viable.

“Whilst this was a successful first trial the speeds were still relatively low and so it will be interesting to watch the development of this programme.”

For more information on companies in this article

Related Content

  • China tests 600km/h maglev vehicle in Shanghai
    June 29, 2020
    A maglev vehicle capable of 600km/h has run on a line at Tongji University
  • Delivering accurate vehicle identification
    August 1, 2012
    In the Netherlands, TNO, the independent research organisation, has been engaged in a project on behalf of the RDW, the Dutch vehicle registration and licensing authority, intended to look at the feasibility of using electronic means to make vehicle identification more accurate and less susceptible to fraud. Electronic Vehicle Identification (EVI) has been in existence in various forms for several years now but TNO was tasked with finding out whether OnBoard Unit (OBU)-based applications could be complement
  • Weigh in motion reduces road wear, increases toll revenue
    January 24, 2012
    IRD, Inc's Terry Bergan discusses future applications of weigh in motion technology. The application in recent years of Weigh In Motion (WIM) at tollgates has been driven by recognition of the fact that there is economic value, which can be levied, attached to Heavy Goods Vehicles (HGVs) which haul laden (and are therefore heavy) rather than empty. As wear and damage to road surfaces increases exponentially with weight, the targeting of HGVs in particular makes sense from both the economic and maintenance p
  • AVs and bombs: a sinister possibility
    November 6, 2019
    Vehicle-ramming attacks by terrorists on pedestrians – often involving multiple fatalities - are sobering reminders of how cars and vans can be used for ill. But a recent court case in the UK highlights a sinister use of newer technology