Skip to main content

Grant to fund commercialisation of PbC batteries for micro-hybrid vehicles

Axion Power International, the developer of advanced lead-¬carbon PbC batteries and energy storage systems, has been awarded a US$150,000 grant from the US Department of Energy (DoE) to fund a commercialisation plan for the use of its PbC batteries in a low-cost, high-efficiency dual battery architecture for micro-hybrid vehicles.
May 25, 2012 Read time: 3 mins
RSS5746 Axion Power International, the developer of advanced lead-¬carbon PbC batteries and energy storage systems, has been awarded a US$150,000 grant from the 5631 US Department of Energy (DoE) to fund a commercialisation plan for the use of its PbC batteries in a low-cost, high-efficiency dual battery architecture for micro-hybrid vehicles.

Micro-hybrid vehicles, which are well on their way to becoming the most common type of automotive vehicle (estimated market size is 25 million by 2016), currently use a ‘start-stop’ system which automatically turns off the engine when the vehicle comes to rest, and then automatically restarts the engine when the brake is disengaged.

Next generation micro-hybrid vehicles will, and in some cases already do, include added features such as regenerative braking, ‘sailing’ (i.e. turning the engine off as the vehicle slows or coasts below a pre-determined speed) and perhaps some form of battery assist to the initial vehicle acceleration.

The lead-acid battery [LAB] is not designed to suitably provide the dual function required in today's micro-hybrid vehicles, let alone handle the added loads of future micro-hybrid vehicles. The dual feature includes working with the alternator generator to start and power the vehicle while the engine is on (LAB is good at this), and then separately, powering the vehicle's ancillary load when the engine is off (LAB is very poor at this). The LAB's shortcomings with respect to powering the ancillary load are directly attributable to the battery's rapid decline in charge acceptance over time due to sulfation. This occurs in the LAB after just a few months of usage.

The PbC battery, on the other hand, has been proven to quickly accept full system charge (i.e. no loss of charge acceptance) for more than five years of usage. This advantage translates into much greater "engine off" time resulting in much greater fuel economy with significantly reduced Co2 emissions. Both of these features are important goals of automotive OEM's and of political leaders in the countries where they manufacture vehicles.

"This is a very important grant for Axion Power, not just for the financial assistance being provided, but for the acknowledgement by the DoE of the potential benefits of our PbC technology in new and innovative constructs and designs," said Axion Power CEO Thomas Granville. "Our technology is ideal for the new world of environmentally friendly, technologically advanced automotive vehicles. Our PbC batteries test out at a consistent high rate of charge acceptance for upwards of five years of usage.  PbC's can be recharged quickly, have a proven safety record and are 100 per cent recyclable - unlike some of the more exotic chemistries like lithium-ion batteries."

For more information on companies in this article

Related Content

  • Swedish drivers support speed cameras
    March 17, 2014
    In sharp contrast to many other countries drivers in Sweden support speed cameras and the planned expansion of the automated enforcement network. Sweden is embarking on a massive expansion of its speed camera network and is doing so with both a very high level of public acceptance and without its drivers feeling persecuted; a feat the administrations in many other countries would like to emulate. So how did this envious state of affairs come about? Magnus Ferlander director of business development and ma
  • Debating the future development of ANPR
    July 31, 2012
    What future is there for automatic number plate recognition? Will it be supplanted by electronic vehicle identification, or will continuing development maintain the technology's relevance? In recent years, digitisation and IP-based communication networks have allowed Automatic Number Plate Recognition (ANPR) to achieve ever-greater utility and a commensurate increase in deployments. But where does the technology go next - indeed, does it have a future in the face of the increasing use of, for instance, Dedi
  • Toshiba introduces new super charge ion battery
    September 10, 2014
    Electricity is in the air – and in Toshiba’s new super charge ion battery (SCiB), on display at ITS World Congress. SCiB batteries can be charged in five to 10 minutes, compared with the traditional overnight charging required for applications such as electric buses. SCiB charges even faster than current fast charge batteries, which take 30 minutes. The ultra-fast charging is possible because SCiB can tolerate a high current of 400 amps, almost three times higher than today’s normal fast charging batt
  • In-vehicle safety standard released for consultation
    July 24, 2012
    The new ISO 26262 standard for safety-related vehicle systems is now available for comment. MIRA's David Ward talks to ITS International about what the standard will mean for vehicle and road safety in the future. The publication on 8 July this year of ISO 26262 as a Draft International Standard (DIS) marks an important progression for the automotive - and, in time, the cooperative infrastructure - industries. A couple of years from now, automotive OEMs will be able to subscribe to a unifying standard for s