Skip to main content

GeoSpock captures space and time to deliver database for IoT

According to Cambridge start-up GeoSpock, the use of geospatial data would improve driving and the scheduling of delivery van journeys would reduce congestion and accidents on high streets and cut fuel use. These are among the geospatial applications to be facilitated by a different type of database developed by the company, which uses knowledge of how the brain stores, manages and retrieves information to offer a database capable of supporting the growing Internet of Things (IoT).
October 6, 2015 Read time: 2 mins
According to Cambridge start-up GeoSpock, the use of geospatial data would improve driving and the scheduling of delivery van journeys would reduce congestion and accidents on high streets and cut fuel use.

These are among the geospatial applications to be facilitated by a different type of database developed by the company, which uses knowledge of how the brain stores, manages and retrieves information to offer a database capable of supporting the growing Internet of Things (IoT).

GeoSpock claims that live geospatial data and telematics are increasingly being used alongside customer data to improve fleet management. However the volume and speed of data movement required to support these applications is outstripping the capability of existing database technologies. GeoSpock is specifically designed for the storage, search and retrieval of geospatial data in real-time no matter how big it gets or how often it changes.

Steve Marsh, GeoSpock’s CEO, explains: “Big data is slow data unless it is managed correctly. A new generation of applications use time and place to deliver a customer service. By combining this dynamic data with historical information in real-time, companies are in a position to predict demand, manage services geographically and optimise their resources.

“However the current database technology used widely by enterprise is not designed to support these applications. Limited storage and processing ability means valuable information has a short lifetime before it is replaced by new data.”

GeoSpock has secured US$5.3 million Series A funding from a group of UK entrepreneurs which includes Cambridge Innovation Capital, Horizon Discovery Group, Dr Jonathan Milner, Parkwalk Funds and Sir Michael Marshall to bring its first product to market and has appointed Victor Christou of Cambridge Innovation Capital as a non-exec director.

Related Content

  • Huawei's ORT tech removes highway toll gates
    August 26, 2020
    Road tolling operations will be transformed by new revenue collection possibilities
  • Sensor detects pothole hazards in real time
    June 15, 2015
    An innovative ‘pothole alert’ research project could potentially save motorists billions of pounds in punctures, vehicle damage and road accidents every year, say researchers. Jaguar Land Rover is researching a new connected car technology that will allow a vehicle to identify the location and severity of potholes, broken drains and manhole covers, and then share this data in real-time via the cloud with other vehicles and with road authorities to help them prioritise repairs.
  • StreetLight Data raises $10m fund to solve transportation challenges
    August 9, 2018
    San Francisco-based mobility analytics company StreetLight Data has raised $10m of investment funding to build up the capabilities of its StreeLight Insight tool, a software platform that combines big data with processing and analytics tools to support critical planning, investment, infrastructure and policy decisions. StreetLight Data aggregates data from mobile devices, connected cars and trucks, the internet of things sensors and geospatial databases to offer a suite of analytics which examine mobility
  • Debating the future development of ANPR
    July 31, 2012
    What future is there for automatic number plate recognition? Will it be supplanted by electronic vehicle identification, or will continuing development maintain the technology's relevance? In recent years, digitisation and IP-based communication networks have allowed Automatic Number Plate Recognition (ANPR) to achieve ever-greater utility and a commensurate increase in deployments. But where does the technology go next - indeed, does it have a future in the face of the increasing use of, for instance, Dedi