Skip to main content

GeoSpock captures space and time to deliver database for IoT

According to Cambridge start-up GeoSpock, the use of geospatial data would improve driving and the scheduling of delivery van journeys would reduce congestion and accidents on high streets and cut fuel use. These are among the geospatial applications to be facilitated by a different type of database developed by the company, which uses knowledge of how the brain stores, manages and retrieves information to offer a database capable of supporting the growing Internet of Things (IoT).
October 6, 2015 Read time: 2 mins
According to Cambridge start-up GeoSpock, the use of geospatial data would improve driving and the scheduling of delivery van journeys would reduce congestion and accidents on high streets and cut fuel use.

These are among the geospatial applications to be facilitated by a different type of database developed by the company, which uses knowledge of how the brain stores, manages and retrieves information to offer a database capable of supporting the growing Internet of Things (IoT).

GeoSpock claims that live geospatial data and telematics are increasingly being used alongside customer data to improve fleet management. However the volume and speed of data movement required to support these applications is outstripping the capability of existing database technologies. GeoSpock is specifically designed for the storage, search and retrieval of geospatial data in real-time no matter how big it gets or how often it changes.

Steve Marsh, GeoSpock’s CEO, explains: “Big data is slow data unless it is managed correctly. A new generation of applications use time and place to deliver a customer service. By combining this dynamic data with historical information in real-time, companies are in a position to predict demand, manage services geographically and optimise their resources.

“However the current database technology used widely by enterprise is not designed to support these applications. Limited storage and processing ability means valuable information has a short lifetime before it is replaced by new data.”

GeoSpock has secured US$5.3 million Series A funding from a group of UK entrepreneurs which includes Cambridge Innovation Capital, Horizon Discovery Group, Dr Jonathan Milner, Parkwalk Funds and Sir Michael Marshall to bring its first product to market and has appointed Victor Christou of Cambridge Innovation Capital as a non-exec director.

Related Content

  • UK government to invest in autonomous cars, low emission vehicles
    November 24, 2016
    Presenting his Autumn Statement, Chancellor Philip Hammond announced investment in transportation, including £390 million for future transport and a major new investment in the UK transport infrastructure. The £390 million investment in future technology includes: investment in testing infrastructure for driverless cars; provision of at least 550 new electric and hydrogen buses, reduce the emissions of 1,500 existing buses and support taxis to become zero emission; installation of more charging points fo
  • The benefit of Lidar: touch, don’t look
    September 28, 2020
    The benefits of Lidar as a safety device for automobiles rather than as an enabler for AVs are easy to overlook – but Dr Jun Pei of Cepton Technologies tells Adam Hill why that would be a big mistake
  • Siemens influences congestion reduction
    March 12, 2021
    When it comes to reducing congestion, even relatively small interventions can have significant and positive knock-on effects, suggests Steve O’Sullivan of Siemens Mobility
  • EasyPark launches Find & Pay predictive parking technology
    August 22, 2017
    Find & Pay from EasyPark uses big data, predictive analytics and machine learning to cut (by up to 50%) the time taken to find parking in congested cities. Find & Pay combines transaction data with crowd-sourced location information from users and Internet of Things (IoT) devices to create a parking probability map for each city block at any given hour of the day. With this information it provides users with a route to their destination which passes along streets with the highest probability of parking avai