Skip to main content

GE researchers developing at-home refuelling station for NG vehicles

In what could help fuel widespread adoption of natural gas-powered (NG) vehicles in the US and globally, GE researchers, in partnership with Chart Industries and scientists at the University of Missouri, have been awarded a programme through Advanced Research Projects Agency for Energy (ARPA-E) to develop an affordable at-home refuelling station that would meet ARPA-E’s target of $500 per station and reduce re-fuelling times from 5-8 hours to less than 1 hour. Natural gas prices are at an all-time low and t
July 20, 2012 Read time: 3 mins
RSSIn what could help fuel widespread adoption of natural gas-powered (NG) vehicles in the US and globally, 940 GE researchers, in partnership with Chart Industries and scientists at the University of Missouri, have been awarded a programme through Advanced Research Projects Agency for Energy (ARPA-E) to develop an affordable at-home refuelling station that would meet ARPA-E’s target of $500 per station and reduce re-fuelling times from 5-8 hours to less than 1 hour.

Natural gas prices are at an all-time low and the number of NG vehicles is increasing, but several barriers are preventing greater adoption of this vehicle technology. These include the inconvenience and low availability of refuelling stations and limited driving range of NG vehicles.

Although at-home refuelling stations are sold currently, at around $5,000 they are expensive and require long re-fuelling times. The 5-8 hours required to refuel an NG vehicle often leaves overnight re-fuelling as the only the viable option for vehicle owners. While these barriers can be more easily managed by established fleets, they are not practical for passenger vehicles parked in the driveway or garage at home.

“Since the beginning of the automotive industry, cars and trucks have driven on diesel fuel or unleaded gas,” said Anna Lis Laursen, project leader and chemical engineer at GE Global Research. “But with new technologies to reduce the cost of NG re-fuelling and continued improvements in battery technology, the prospects for vehicles that run on alternative fuels will only grow.

“The goal of our project is to design an at-home refuelling station that is much simpler in design, more cost effective and reduces re-fuelling times to under an hour. By reducing the time and cost of re-fuelling, we can break down the barriers that are preventing more widespread adoption of NG vehicles. If we can meet our cost targets, the price of a home refuelling station would be less than typical appliances in the home such as a dishwasher or stove.”

Today, the number of NG vehicles globally is estimated at around 15 million, with more than 250,000 in the US. Most are fleet vehicles such as buses and delivery trucks, but they include some passenger cars as well. With further improvements in the infrastructure to support NG vehicles, the market penetration could be much higher.

The refueling station design being worked on is fundamentally different from how today’s re-fuelling stations operate. Today’s systems rely on traditional compressor technologies to compress and deliver fuel to a vehicle. The research team from GE, Chart Industries and the University of Missouri will design a system that chills, densifies and transfers compressed natural gas more efficiently. It will be a much simpler design with fewer moving parts, and that will operate quietly and be virtually maintenance-free.

The total cost of the 28-month programme will be around $2.3 million, which will be shared by ARPA-E and GE. As part of the programme, GE researchers will focus on overall system design integration. Chart Industries and University of Missouri will address the detailed engineering, cost and manufacturability of the key system components.

For more information on companies in this article

Related Content

  • Rethink required to reduce road transport’s environmental impact
    March 15, 2016
    Against a background of a renewed focus on limiting the rise in average temperatures, Colin Sowman looks at a project that is taking a holistic approach to the environmental impact and safety of road transport. At the COP21 meeting in Paris last December, almost 200 nations agreed to reduce greenhouse gas emissions in an effort to keep the rise in global temperatures to 2°C) compared with pre-industrial levels. The transportation sector is a major contributor to the production of CO2, one of the main green
  • Bosch honoured with Global NCAP award for ESP
    June 14, 2012
    Bosch has received the Global NCAP Award 2012 for developing and launching the electronic stability programme (ESP). The award, which is conferred by the Global New Car Assessment Programme, was presented during the consumer safety organisation's annual meeting in Malacca, Malaysia. Global NCAP’s rationale for this award was ESP’s high level of effectiveness and its ability to significantly reduce the number of road accidents and fatalities – thereby supporting the aims of the UN Decade of Action for Road S
  • TRL pledges support for global initiative at UN Climate Summit
    October 2, 2014
    The UK’s Transport Research Laboratory (TRL)’s chief executive Rob Wallis, attending the United Nations Climate Summit in New York last week, was delighted to be able to pledge TRL’s support to the UEMI initiative, by UN-Habitat. “The UEMI initiative, aimed at substantially increasing the adoption of electric vehicles within urban environments, aligns strongly with TRL’s own strategy and current activities,” Wallis explained. “TRL is actively engaged in leading innovative research programmes to understan
  • New research assesses potential for driver-assistive truck platooning
    May 29, 2015
    The Phase One Final Report of the Driver-Assistive Truck Platooning (DATP) initiative was recently released by the research team. The DATP truck platooning research, which was funded by a grant from the US Department of Transportation's Exploratory Advanced Research program, utilises radar, vehicle-to-vehicle communications and video technologies to decrease over-the-road truck headways, with the objective of improving fuel economy without compromising safety.