Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Data acquisition front-end IC
    February 2, 2012
    Austriamicrosystems has announced the AS8510, a high precision data acquisition front-end IC for automotive battery current, voltage, temperature sensing applications. It is also suited to sensor interface applications where precise measurement of small signals close to ground is required.
  • China BAK receives government subsidy for its battery module project
    April 11, 2012
    China BAK Battery, a manufacturer of lithium-based battery cells, has announced that the company has received a US$1.9 million subsidy for its battery module project from the National Development and Reform Commission (NDRC) and Ministry of Industry and Information Technology (MIIT). Comprised of cylindrical cells that can be used in electric vehicles (EVs), electric motors, electric bicycles (e-bikes) and power storage, the government funds will be used to further develop the battery module's efficiency an
  • Autoscope Duo unveiled
    May 2, 2012
    Econolite and Image Sensing Systems have unveiled Autoscope Duo, a first in a new generation of hybrid sensor technologies. The device converges the robust capabilities of radar and video and uses intelligent decision logic to monitor the current operating conditions and to combine the best of radar with the best of video data, continuously, lane-by-lane and second-by-second. According to the partners, these two sensor technologies lead to signicant performance improvements and provide the highest accurac
  • Driverless Russia: Look – no hands!
    March 26, 2020
    Russia is betting on the importance of driverless cars as the country’s transport system develops in the years to come.