Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Idaho adds human dimension to winter savings
    September 23, 2014
    Idaho leverages the increased capability and reliability of its road weather sensor network to reduce costs and prevent accidents. Weather-related accidents can form a significant chunk of an authorities’ annual road casualty statistics. While authorities cannot control the weather, the technology exists to monitor the road conditions and react with warnings to motorists and the treatment of icy or snow-covered roads. However, with all capital expenditure now placed under the microscope of public scrutiny,
  • HERMES Study provides guidance for forward ITS thinking in Finland
    August 25, 2016
    Having authored HERMES, a major study for the Finnish Ministry of Transport and Communication, Josef Czako talks to ITS International about his findings and lessons for other authorities. When CEOs of major automakers are predicting more change in the next five years than in the past 50, what is the role of national authorities considering the benefits of innovations in ITS?
  • Ford engineers falling asleep at the wheel – level 3 autonomy ditched
    February 21, 2017
    Ford has denied reports quoting the company’s executive vice president of product development and chief technical officer, Raj Nair, as saying that its engineers were falling asleep while testing autonomous vehicles, although it has confirmed that it will not offer SAE Level 3 vehicles. “These are trained engineers who are there to observe what’s happening,” Nair told Bloomberg. “But it’s hu
  • Norway gets ready for more EVs
    September 14, 2021
    Norway’s road transport network is changing radically. The country is gearing up for greater electric vehicle use as well as gradually phasing out its traditional ferry links