Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Growth of telematics-based pay as you drive car insurance systems
    July 17, 2012
    Car insurance made cheaper by telematics has returned to news headlines in the UK this year. Will it really take off this time and can vehicle tracking provide an effective tool for enforcing or encouraging insurance compliance? Jon Masters reports Will 2012 go down as the year that telematics-based car insurance took off? In the UK at least, a groundswell of new policies, with premiums priced on the basis of tracked and analysed driving style, suggests a turning point has been reached. Some would argue t
  • Machine vision - cameras for intelligent traffic management
    January 25, 2012
    For some, machine vision is the coming technology. For others, it’s already here. Although it remains a relative newcomer to the ITS sector, its effects look set to be profound and far-reaching. Encapsulating in just a few short words the distinguishing features of complex technologies and their operating concepts can sometimes be difficult. Often, it is the most subtle of nuances which are both the most important and yet also the most easily lost. Happily, in the case of machine vision this isn’t the case:
  • Masdar Institute and Abu Dhabi Department of Transport sign MoU
    December 24, 2012
    Abu Dhabi's Department of Transport (DoT) and Masdar Institute of Science and Technology, an independent, research-driven graduate-level university focused on advanced energy and sustainable technologies, has signed a memorandum of understanding (MoU) to establish a collaborative partnership on exchange of information in transportation. The MoU will enable the sharing of information on Abu Dhabi's public transport systems and basic traffic data to be used by Masdar Institute for a research project. The proj
  • Horizon 2020 launches three new calls for transport projects
    December 12, 2013
    The launch of calls for proposals and related activities under the Horizon 2020 work programmes for 2014-15 has been announced. The launch of these calls also marks the launch of Civitas 2020, the next phase of the Civitas initiative which is designed to strengthen sustainable urban mobility across and beyond Europe. The first call, Mobility for Growth, focuses on innovation and technology projects in air, rail, road and waterborne transport, logistics, intelligent transport systems and infrastructure.