Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Can GNSS solve the tolling world’s woes?
    December 5, 2013
    Kapsch’s Arno Klamminger and Wolfgang Fleischer consider the need for an agnostic approach to technology for charging and tolling. Periodically, given the march of technology, it is worth pausing and taking stock of where we have got to and where we go next. Such reflections are necessary if we are to take full advantage of what we have at our disposal and, potentially, avoid decisions which push us down technological culs de sac. A look at the use of Global Navigation Satellite System (GNSS)-based technol
  • IAM RoadSmart welcomes US study on benefits of humans and new vehicles working together
    August 17, 2017
    UK independent road safety charity IAM RoadSmart has welcomed a new white paper which it says supports its statement that we will not gain the full safety benefits of self-driving cars until every car on the road is connected to each other. Until then, IAM RoadSmart believes that the human mind holds the edge, until such point that connected cars actually ‘talk’ to each other and predict what is happening over the horizon. According to the white paper, Sensor Fusion: A Comparison of Sensing Capabilities of
  • Cooperative infrastructure systems waiting for the go ahead
    February 3, 2012
    Despite much research and technological promise, progress towards cooperative infrastructure system deployment is still slow. Here, Robert Cone and John Miles take a considered look at how and when it might come about. From a systems engineering viewpoint it looks logical and inevitable that vehicles should be communicating between themselves and with the road infrastructure. But seen from a business viewpoint the case is not proven.
  • Volvo tests electric road
    July 1, 2013
    Researchers at the Volvo Group are looking into a future where trucks and buses are continuously supplied with electric power without carrying large batteries. Instead, power lines are built into the surface of the road. This could be a future solution for long-distance trucks and buses running on electricity. “In city traffic, there are currently various solutions and we are researching many others. We have field tests in progress where our plug-in buses are equipped with a battery that can be charged quic