Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Low carbon vehicles ‘must be centred on consumers to succeed’
    February 2, 2017
    A greater understanding of how low carbon vehicles can meet the needs of mainstream consumers is needed if the huge challenge of decarbonising transport in the UK is to be achieved, according to the Energy Technologies Institute (ETI). The ETI believes the most promising opportunity is for an increase in the use and ownership of plug-in electric vehicles (hybrids and battery operated) but new market structures will have to be introduced to enable and support the most promising solutions. Many people
  • Owning a car will be a thing of the past in less than a decade, say researchers
    January 10, 2017
    UK automotive executives expect that more than half of today’s car owners will not want to own a car in less than a decade, according to KPMG’s Global Automotive Executive Survey 2017. The survey found that 74 per cent of UK automotive executives think that until 2025, more than half of car owners today will not want to own a vehicle, as self-driving technology and mobility as a service will take priority. The report findings revealed that 62 per cent of UK automotive executives view diesel technolog
  • Used EV batteries to transform stationary storage
    August 26, 2016
    According to a report (link http://about.bnef.com/landing-pages/new-life-used-ev-batteries-stationary-storage/.) by Bloomberg New Energy Finance (BNEF), the electric vehicle market is set to grow quickly, but so far there has been no consensus on a ‘second-life’ for the many used EV batteries. In this report, senior analyst Claire Curry has compiled the first data and shows that low-cost energy storage could be here sooner than previously thought. She projects that there will be 29 GWh of used EV batter
  • EVgo adds second-life batteries to fast-charging system
    July 18, 2018
    EVgo has added second-life BMW i3 batteries to its Union City fast-charging station in California to store energy during peak solar hours and reduce strain on the grid. This energy is then used to deliver a fast charge to EVgo customers’ electric vehicles during periods of high demand. The second-life battery system integrates two BMW i3 battery packs into a single housing. Evgo says each battery pack has a capacity of 22 kWh which combines with a 30 kW inverter to offer a 30 kW/44 kWh energy storag