Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • The benefit of Lidar: touch, don’t look
    September 28, 2020
    The benefits of Lidar as a safety device for automobiles rather than as an enabler for AVs are easy to overlook – but Dr Jun Pei of Cepton Technologies tells Adam Hill why that would be a big mistake
  • Mcity test centre for connected and driverless vehicles now open
    July 21, 2015
    The University of Michigan has opened Mcity, the world's first controlled environment specifically designed to test the potential of connected and automated vehicle technologies that will lead the way to mass-market driverless cars. Mcity was designed and developed by U-M's interdisciplinary MTC, in partnership with the Michigan Department of Transportation (MDOT). The 32-acre simulated urban and suburban environment includes a network of roads with intersections, traffic signs and signals, streetligh
  • Qualcomm and Ricardo partner on wireless EV charging
    April 4, 2016
    Qualcomm Incorporated and Ricardo have entered into a wireless electric vehicle charging (WEVC) technology licence agreement, under which Ricardo has licensed Qualcomm Halo technology to commercialise WEVC systems for plug-in hybrid (PHEVs) and electric vehicles (EVs). Under the terms of the agreement, Qualcomm has granted to Ricardo a royalty-bearing technology license to develop, make and supply WEVC systems for automobile manufacturers. Qualcomm subsidiaries will provide technical expertise and engineeri
  • Consultation to examine how UK electricity network can prepare for increase in EVs
    October 13, 2016
    The UK’s Smart EV project is launching its Consultation on Managed EV Charging at the Low Carbon Networks Innovation Conference in Manchester. The Consultation invites stakeholder views to ultimately secure a standardised industry-wide agreement for the connection, charging and control of electric vehicles. The project’s ultimate aim is to achieve agreement across a number of industries on the best way to help facilitate the roll out of controlled EV charging. In doing so, it will enable significantly