Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • MAPping public transport and parking data
    February 9, 2015
    The Australian city of Adelaide, which has embarked on a 30-year urban development plan, is piloting Xerox’s new Mobility Analytics Platform (MAP) to improve its public transport services by analysing people flows between different sectors of the city. The recently-introduced analytics platform analyses the anonymous data created by the daily transportation and ticket-buying habits of millions of commuters and produces a new city-wide picture of transportation operations including adherence to schedules
  • Ford, Uber and Lyft to share data through SharedStreets
    October 3, 2018
    Ford, Uber and Lyft will make data sets available on the SharedStreets platform in a bid to help cities and mobility companies manage congestion, cut greenhouse gases and reduce crashes. The commitment was announced at the second annual Bloomberg Global Business Forum in New York. SharedStreets is funded by the Bloomberg Philanthropies consortium. Its aim is to make it easier for the private sector to work with cities around the world and utilise data to improve mobility. According to Ford, the partn
  • Electric and petrol-powered cars could be price-competitive in 2017
    July 29, 2013
    New projections from US advocacy group the Electric Coalition indicate that the cost of owning an electric car is on its way to becoming competitive with petrol-powered cars. The coalition teamed with professional services firm PricewaterhouseCoopers (PWC) to calculate expected costs of several types of compact cars, pitting battery-electric against internal combustion engines, plug-in hybrids and hybrid vehicles. Including cost of purchase, fuel, maintenance, federal tax credits and residuals, the data sho
  • New services and equipment helps cities tackle air quality issues
    September 19, 2017
    With poor urban air quality shortening lives and fines being imposed for breaching pollution limits, authorities are seeking ways to clean up their cities. Poor air quality is topping the agenda for city authorities across the globe. In the UK, for example, a report from the Royal Colleges of Physicians and of Paediatrics and Child Health, concluded that poor outdoor air quality shortens the lives of around 40,000 people a year – principally by undermining the health of people with heart and/or lung prob