Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Singapore plans changes to transit system
    June 13, 2018
    Singapore has the third-highest population density in the world and the numbers are continuing to grow. The government knows that transit is vital: David Crawford investigates the city state’s Smart Nation strategy. Transport is the most important of the five domains identified as the pillars of Singapore's far-reaching Smart Nation strategy, launched in November 2014 by prime minister Lee Hsien Loong with the aim of reaching fulfilment by 2024. Roads account for 12% of the island republic's 719km2 land ar
  • Norway continues to lead global electric vehicle market
    September 23, 2016
    Norway continues to lead the global market for electric vehicles, according to the most recent plug-in electric vehicle (PEV) index from IHS Automotive, part of business information provider IHS Markit. Plug-in electric vehicles are defined as either a pure Battery Electric Vehicle (BEV) or a Plug-In Hybrid Vehicle (PHEV). Based on analysis of new vehicle registrations during the first quarter 2016, one out of every three vehicles registered in Norway during the quarter was a plug-in electric vehicle, r
  • EVs: Time for a rethink
    December 14, 2021
    Given a growing body of evidence that EVs are not the clean, green machines they are made out to be, Andrew Bunn suggests they can only be part of the puzzle – not the answer to environmental problems
  • Electric vehicles in construction are the future, say researchers
    December 20, 2016
    The industrial and commercial sector is the largest part of the electric vehicle value market and that will continue to be the case according to analysis in the IDTechEx report, Industrial and Commercial Electric Vehicles 2017-2027. Buses are the largest part of that and they are mainly made in China for China, where typical orders are ten times the size of orders elsewhere. Less dramatically, construction, mining and agriculture do not see 70 per cent grants for EV versions yet they are steadily becomin