Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • ITSWC 2021: New solutions for the new normal
    September 20, 2021
    October’s ITS World Congress in Hamburg will profile the changing face of mobility, with real-world examples of electric vehicle implementation, shared transport and autonomy taking centre stage
  • Auto OEMs ‘focus on opportunities in infotainment, digital instruments’
    January 19, 2017
    One in every four passenger vehicles sold by 2025 is poised to feature digital instrument clusters, dedicated passenger infotainment systems, and integrated biometrics with bought-in device functionality, says Frost & Sullivan. Original equipment manufacturers (OEMs) are tackling the design of components that are in line with fast-changing technology trends and customer expectations. “The luxury segment car of the future will have augmented reality HUD, OLED displays, interactive cabin doors and windows,
  • Ford Mondeo – the car that brakes for pedestrians
    September 26, 2014
    The all-new Ford Mondeo will be equipped with a raft of safety features, including technology that is able to detect people in the road ahead and – if the driver does not respond to warning sounds and displays – automatically applies the brakes. Pedestrian Detection is among a raft of new features and improvements detailed by Ford which enhance the Mondeo. The system is part of the Pre-Collision Assist package that also introduces Active Braking, which can autonomously apply braking to help mitigate rear
  • Simple solutions for bigger screen
    December 10, 2015
    Mitsubishi’s David Jones considers an alternative to purchasing the display technology for traffic management centres. Display screen technology is evolving rapidly but while the video wall is arguably the most important technology system in a traffic management centre (TMC), most are five to 10 years old and effectively obsolete. When faced with similar problems, other sectors around the world have adopted a policy of leasing all or part of the equipment.