Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Electric cars – do zero emissions add up?
    August 9, 2013
    Buying an electric car may seem to be the green option when the energy label states Zero CO2 emissions. But that’s not the whole story when you factor in the electricity required to charge the batteries, and associated CO2 emissions created in electricity generation; the green benefits then become less clear. According to Vehicle Certification Agency (VCA), the latest Renault Clio 4, dCi 90 ECO, emits 83 grams of CO2 per kilometre travelled. In comparison the Electric Nissan Leaf, requires 173 Watts of elec
  • Zipcar and Houston launch first of its kind municipal EV car sharing scheme
    August 23, 2012
    Leading car sharing network company Zipcar has announced a new partnership with the city of Houston to launch a municipal electric vehicle (EV) fleet sharing programme, called Houston Fleet Share. Through this initiative, 50 existing city-owned fleet vehicles – including 25 Nissan Leaf EVs – will be outfitted with Zipcar's FastFleet proprietary fleet sharing technology for use by city employees across all departments.
  • Automotive software developers call on hackers to find its flaws
    January 20, 2017
    A consortium of US researchers has announced the development of a universal, free, and open-source framework to protect wireless software updates in vehicles. The team issued a challenge to security experts everywhere to try to find vulnerabilities before it is adopted by the automotive industry. The new solution, called Uptane, evolves the widely used TUF (The Update Framework), developed by NYU Tandon School of Engineering Assistant Professor of Computer Science and Engineering Justin Cappos to secure
  • UK trial of electric cars proves they are greener
    June 14, 2013
    Experts leading a major three-year trial into the impact of electric vehicles and the role they could play in our transport systems of the future, have shown that rolling them out across our city’s roads would protect both our health and the environment. Data gathered and analysed by transport experts at the UK’s Newcastle University shows that daytime air pollution levels in our towns and cities regularly exceed the Government’s recommended 40µg m-3 (21 parts per billion) for prolonged periods, putting peo