Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Network video alternative to machine vision in urban applications
    January 11, 2013
    It would be easy to fall into the trap of seeing machine vision as the vision-based solution for ITS and traffic, however Patrik Anderson, Director Business Development Transportation of Axis Communications, notes that many of the applications which are coming to be associated with machine vision – and, indeed, many of the characteristics, such as at-the-edge analytics and image processing – are also possible with open-standard networked video. Networked video brings a whole host of advantages, such as the
  • Autonomous vehicles will not prevent half of real-world crashes
    April 5, 2017
    Alan Thomas of CAVT looks at the reality behind the safety claims fuelling the drive towards autonomous vehicles
  • Near-fit technology can provide the solution - just ask the question.
    August 19, 2015
    When a company launches a product it never quite knows how that product will be used and what else it may be required to do. Lufft’s mobile weather sensor MARWIS is a prime example. Last winter Lufft introduced MARWIS, its mobile road weather sensor, handing it initially to long-term sales partners to test and improve. What was known was the sensor’s fast reaction rate (up to 100 Hertz), combined with its wide range of measurement information, and would provide users with a gapless overview of the road stat
  • New Zealand to trial mobile road weather data acquisition
    August 16, 2016
    From September 2016, MetService and the New Zealand Transport Agency will commence a road weather mobile data acquisition trial, in conjunction with road contractors Fulton Hogan and Downer. The aim of the trial is to provide MetService, the Transport Agency, road contractors and the travelling public with pre-warning of challenging and dangerous driving conditions or potential road closures during severe weather. The six-month trial follows a pilot sensor-assessment process and aims to expand road