Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Technology and finance shapes up to make MaaS happen
    June 7, 2017
    The technology and finance aspects needed for Mobility as a Service (MaaS) to become widely adopted are taking shape as Geoff Hadwick and Colin Sowman hear. Sampo Hietanen, CEO of MaaS Global and ‘father’ of MaaS, started his address to ITS International’s recent MaaS Market conference in London by saying: “All of the problems that can be solved by a company or group of companies have already been solved, and now we are left with the big ones such as housing, transport and health. He called MaaS the “Netfli
  • Kerb your enthusiasm, warns Passport
    March 4, 2019
    Dynamic kerbside management is crucial if urban authorities are to address increasingly chaotic situations caused by the gig economy and mobility innovation, says Adam Warnes at Passport Demand for the kerbside is growing and changing and it’s no surprise when you consider the recent innovations within the mobility industry. For starters, there are new modes of transport, including ride-shares, electric vehicles (EVs), dockless cycles, last-mile consolidations and autonomous vehicles (AVs). Secondly, the
  • The benefits of combining enforcement and traffic management
    February 27, 2013
    Jason Barnes considers how combining enforcement equipment with other traffic management technologies might benefit our future – if only the will were really in place to do so. During the ITS World Congress in Vienna in October last year, Navtech Radar and Vysion­ics ITS announced a strategic partnership that would combine the expertise of Navtech in millimetre-wave wide-area surveillance technology with Vysionics’ machine vision-based automatic number plate recognition (ANPR) and average speed measurement
  • US state of the art workzone safety
    January 25, 2012
    The Texas Transportation Institute's Jerry Ullman talks about the state of the art in work zone safety in the US. Work zones are places where, perhaps more than anywhere else on the road network, mobility and safety are strongly linked. Historically, field crews and contractors wanted vehicles in work zones to be moving as slowly as possible, assuming that made conditions the safest for work crews. We are though starting to see a shift in such thinking with the realisation that excessive delays or slow-down