Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • University develops rail crossing safety technology
    June 14, 2013
    Technology developed by Melbourne’s La Trobe University’s Centre for Technology Infusion that aims to reduce or even eliminate accidents at railway level crossings is to be trialled by the Queensland government as part of a $2 million commitment to address safety at rail crossings. The system uses GPS and dedicated short range communications (DSRC) wireless technology to establish a wireless connection between trains and vehicles approaching a railway crossing. The system is designed to detect the possibili
  • Open-source architecture: closing the standards gap
    May 19, 2023
    Open-source architecture is vital to help accelerate the deployment of new ITS and C/AV solutions, says David Spinney of Econolite Systems. Just so long as we avoid the mistakes of the past…
  • Driverless vehicles just around the corner?
    February 28, 2013
    umors that self-driving taxis are about to hit the streets of Las Vegas have turned out to be untrue… but the age of the driverless vehicle is only just around the corner, as Pete Goldin finds out. From Herbie the Love Bug to Knight Rider to the cast of the Pixar film Cars, the autono­mous auto has long been a beloved icon in the entertainment industry. But how close is the fiction to fact? The general public might be surprised to find out just how soon autonomous vehicles could be driving on our roadways.
  • SESA deploys dynamic Trailblazer signs for Michigan DOT
    May 6, 2016
    SES America (SESA) recently completed the manufacture and installation of full colour LED dynamic Trailblazer signs for the Michigan Department of Transportation and is set to soon begin manufacturing of additional signs for the next phase of this ongoing work. The signs are part of integrated corridor management along I-75 designed by the Michigan Department of Transportation. Each sign is part of SESA’s Messenger 5000 embedded DMS series, a line of embedded DMS designed to display travel time, toll rate,