Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Nissan speeding up EV charging infrastructure
    June 22, 2012
    Nissan has teamed up with leading European utility and Electrical Vehicle (EV) supply equipment companies to speed development of cheaper, smaller, quick chargers for EV batteries, and accelerate the installation of publicly available Quick Charge (QC) points right across Europe. This agreement between Nissan, Circutor, DBT, Efacec, Endesa and Siemens is expected to result in a dramatic reduction in the price of the units – by over half to under €10,000 (US$13,668) – paving the way for businesses such as se
  • VW scandal prompts emissions testing debate
    December 1, 2015
    In the wake of the VW scandal John Kendall looks at emissions testing on both sides of the Atlantic. Since the VW emissions story broke in September, emissions testing has come under greater scrutiny, and none more so than in Europe, where critics have long been highlighting the weaknesses of the testing system. Ironically, changes to the emissions testing process were already under review but the story has pushed it up the agenda.
  • Here’s why WiM is value for money
    January 23, 2025
    Weigh in Motion systems are not new. What is new is their ability to collect more data and – importantly – more accurate data about axle loading and vehicle weight. Despite the obvious benefits, including safer highways and possibility of automated legal weight enforcement, obstacles remain for faster uptake. David Arminas reports on the manufacturers’ perspective…
  • Will mobile apps kick-start mobility pricing?
    January 5, 2016
    Thomas Hallauer from Ptolemus believes trials of connected road charging services will show the pay per mile concept will go much further than previously thought. Drivers are progressively becoming directly connected to the transport infrastructure and while the methods are changing, the innovation is really in the models rather than the technology.