Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Hawai'i Uni to improve Honolulu traffic corridor
    August 10, 2020
    Students will spend four years analysing opportunities for C/AV technologies
  • Toshiba introduces new super charge ion battery
    September 10, 2014
    Electricity is in the air – and in Toshiba’s new super charge ion battery (SCiB), on display at ITS World Congress. SCiB batteries can be charged in five to 10 minutes, compared with the traditional overnight charging required for applications such as electric buses. SCiB charges even faster than current fast charge batteries, which take 30 minutes. The ultra-fast charging is possible because SCiB can tolerate a high current of 400 amps, almost three times higher than today’s normal fast charging batt
  • On-road and in-vehicle are not in competition
    May 18, 2018
    The integrity and accuracy of data that can be verified by weigh-in-motion technology has been improving for decades – and the range of WIM applications is increasing at a tremendous pace. Chris Koniditsiotis, president of the International Society for Weigh-in-Motion (ISWIM) and CEO of Transport Certification Australia (TCA), began his career in 1985 as a pavements engineer. “When I joined this portfolio, the integrity, accuracy, and sampling frequency of mass information delivered at best an estimate, us
  • High cost of EVs is the biggest turn-off, UK research finds
    March 29, 2012
    A high price tag was the biggest disincentive for majority of over a third (37 per cent) of surveyed motorists when it came to considering buying an electric car, a recent survey run by TheGreenCarWebsite.co.uk reveals. In second place with 29 per cent was the limited range that electric cars offer compared to conventional, internal combustion engine cars. A lack of charging facilities (20 per cent), concerns about the car’s battery lifespan (11 per cent) and a lack of model choice (three per cent) also co