Skip to main content

GE, Ford, University of Michigan working to extend EV battery life

GE researchers, in partnership with Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.
August 6, 2012 Read time: 2 mins

940 GE researchers, in partnership with 278 Ford Motor Company and the University of Michigan, are working together to develop a smart, miniaturised sensing system that has the potential to significantly extend the life of car batteries over conventional battery systems used in electric vehicles today.

“The car battery remains the greatest barrier and most promising opportunity to bringing EVs mainstream.” said Aaron Knobloch, principal investigator and mechanical engineer at GE Global Research. “Improvements in the range, cost and life of the battery will all be needed for EVs to be competitive. With better sensors and new battery analytics, we think we can make substantial progress at increasing battery life. This, in turn, could help bring down its overall cost and the cost entitlement of buying an electric car.”

To improve the life and reduce the lifecycle cost of EV batteries, GE will combine a novel ultrathin battery sensor system with sophisticated modelling of cell behaviour to control and optimise battery management systems. Today’s sensors on EVs and plug-in hybrid vehicles (PHEVs) measure the health of the battery by looking at factors such as its temperature, voltage, and current. However, these measurements provide a limited understanding of a battery’s operation and health. The goal of the ARPA-E project will be to develop small, cost effective sensors with new measurement capabilities. Due to their small size, these sensors will be placed in areas of the battery where existing sensor technologies cannot be currently located. The combination of small size and ability to measure new quantities will enable a much better understanding of battery performance and life.

A group of scientists from the 5594 University of Michigan, led by Anna Stefanopoulou, a professor of mechanical engineering, will use the data generated by GE sensors to verify advanced battery models. They will ultimately create schemes that use instantaneous sensor data to predict future battery-cell and battery-pack behaviour.

The use of sensors in conjunction with real-time models will enable novel algorithms that optimise how the battery system is managed to extend its life. To demonstrate the capabilities of the sensor system and analytics, Ford will integrate them into one of their vehicles for validation.

For more information on companies in this article

Related Content

  • Arada thinks small is better
    May 22, 2012
    In an effort to break stagnation in the DSRC market, Arada Systems has developed a DSRC radio that can plug into any device with a USB port. The idea is that USB will help proliferate DSRC and drive down pricing, leading to a wave of new applications and innovation.
  • Digital twins help city space race
    October 26, 2022
    As the world becomes more urbanised, there is a need to monitor the likely effects this will have on the way we live, says Jeroen Borst of TNO, the Dutch organisation for applied scientific research
  • Arup picks 8 ways ITS can save the planet
    January 6, 2022
    The solutions we need to accelerate carbon-free transport are known, available and ready to be deployed. Tim Gammons from Arup explains what the ITS industry can do now to help…
  • Two seconds – the difference between life and death
    October 17, 2016
    Professor Donald Fisher has spent 15 years identifying factors that increase the crash risk of novice and older drivers. His findings highlight the difference between living and dying, Colin Sowman reports.