Skip to main content

Four expansions added to Virginia’s Smart Road to test AVs in urban, rural and residential environments

The Virginia Tech Transportation Institute and the Virginia Department of Transportation (VDoT) has unveiled four expansions to the Virginia Smart Road to accelerate advanced-vehicle testing and explore how automated and autonomous vehicles (AVs) will function on U.S. roadways including edge-and-corner environments. Two new facilities have opened for testing: The Surface Street Expansion, an urban test bed, and the Live Roadway Connector, which connects the Smart road to the U.S. Route 460-Business,
November 27, 2017 Read time: 3 mins
The Virginia Tech Transportation Institute and the Virginia Department of Transportation (VDoT) has unveiled four expansions to the Virginia Smart Road to accelerate advanced-vehicle testing and explore how automated and autonomous vehicles (AVs) will function on U.S. roadways including edge-and-corner environments.

Two new facilities have opened for testing: The Surface Street Expansion, an urban test bed, and the Live Roadway Connector, which connects the Smart road to the U.S. Route 460-Business, public road.

The recently completed surface street area has been aims to accommodate urban and residential scenarios in a safe and controlled facility as well as enabling researchers to study pedestrian risk. It has portable features, which include reconfigurable buildings; roadside elements, such as sidewalks, a bus stop, fire hydrants, light poles, bike lanes, and alleyways; roundabout and stop-controlled intersections; and removable lane markings. These props can be moved and reinstalled, to recreate a variety of real-world settings such as neighbourhoods and city intersections.

Additionally, the Live Roadway Connector is designed with the intention of allowing drivers to seamlessly transition between a live traffic environment and the closed Smart Road facility. This feature will enable researchers to analyse how drivers may behave or adjust their behaviour after driving under automated mode for long periods of time. The connector also increases the length of the highway section of the Smart Road to 2.5 miles.

Scheduled to open in 2018, the Rural Roadway Expansion will test advanced vehicles on a track that will feature hilly and winding roads, short sight distances, small bridges and narrow sections, off-road sections, embankments, soft grass shoulders, natural foliage overhanging the road, and intersections. It will allow researchers to meet the industry demand for testing automated and AVs in urban, residential and rural areas.

Slated to open next year, the Automation Hub will house a new internship program focused on accelerating hands-on practical skill development for Virginia Tech students. Interns will have the opportunity to collaborate with researchers from the VDoT, the University, and the transportation institute as well as automotive industry partners on transportation research and development projects.

Theresa Mayer, vice president of research and innovation at Virginia Tech, said: “This is a critical time in transportation research, a time in which we are realizing the future of transportation at a more accelerated pace than ever before. Advanced vehicles are no longer a pipedream, the spark of an idea in an engineer’s imagination. These vehicles are here; they are being deployed on our nation’s roads."

“Our new testing facilities will undoubtedly enhance industry, governmental, and researcher needs for testing advanced-vehicle technology. It is imperative that our faculty and students work closely with such entities to help design, test, and deploy advanced systems for the betterment of the entire transportation community", Mayer added.

Related Content

  • Aimsun takes part in driver data study to improve C/AVs
    November 14, 2018
    Aimsun is taking part in a UK study which is using human driver data to help improve the performance and acceptability of connected and autonomous vehicles (C/AVs). The one-year project, Learning through Ambient Driving Styles for Autonomous Vehicles (LAMBDA-V), will also look at how driver behaviour can be analysed and used to accelerate the adoption of C/AVs. Aimsun says new rules for safer and more efficient driving behaviour could be created from existing vehicles, based on road laws and on how h
  • Software is at heart of safe vehicle connectivity, says Qt Group
    September 15, 2023
    Connected vehicle safety isn’t just under threat from malicious actors exploiting code – it’s also about avoiding software faults that could result in harm to people, says Patrick Shelly of Qt Group
  • German cars learning US traffic regulations
    September 19, 2014
    Mercedes-Benz is expanding its research activities in the US, now that it has received a licence permitting it to test autonomous vehicles on public roads in California. The company says it now plans to take autonomous driving to a new level in the US, despite the differences between US and German traffic systems, which it says are vast. While motoring in Germany commonly takes place on narrow roads, the roads in the USA are frequently wider and may have more than six or even eight lanes. Traffic lights
  • PTV takes lessons from logistics software to help test AV behaviour
    June 7, 2018
    Some people in the transportation industry may be reluctant to treat travellers as goods that need to be shipped from point A to point B. The traffic software engineers at PTV Group are not some of those people. According to Jongsun Won, the lessons he and his colleagues have learned from years of creating logistics software are extremely useful in the new age of autonomous vehicles. “In an autonomous vehicle, people are essentially the goods that are being transported around a city,” Won said. “There are