Skip to main content

Four expansions added to Virginia’s Smart Road to test AVs in urban, rural and residential environments

The Virginia Tech Transportation Institute and the Virginia Department of Transportation (VDoT) has unveiled four expansions to the Virginia Smart Road to accelerate advanced-vehicle testing and explore how automated and autonomous vehicles (AVs) will function on U.S. roadways including edge-and-corner environments. Two new facilities have opened for testing: The Surface Street Expansion, an urban test bed, and the Live Roadway Connector, which connects the Smart road to the U.S. Route 460-Business,
November 27, 2017 Read time: 3 mins
The Virginia Tech Transportation Institute and the Virginia Department of Transportation (VDoT) has unveiled four expansions to the Virginia Smart Road to accelerate advanced-vehicle testing and explore how automated and autonomous vehicles (AVs) will function on U.S. roadways including edge-and-corner environments.

Two new facilities have opened for testing: The Surface Street Expansion, an urban test bed, and the Live Roadway Connector, which connects the Smart road to the U.S. Route 460-Business, public road.

The recently completed surface street area has been aims to accommodate urban and residential scenarios in a safe and controlled facility as well as enabling researchers to study pedestrian risk. It has portable features, which include reconfigurable buildings; roadside elements, such as sidewalks, a bus stop, fire hydrants, light poles, bike lanes, and alleyways; roundabout and stop-controlled intersections; and removable lane markings. These props can be moved and reinstalled, to recreate a variety of real-world settings such as neighbourhoods and city intersections.

Additionally, the Live Roadway Connector is designed with the intention of allowing drivers to seamlessly transition between a live traffic environment and the closed Smart Road facility. This feature will enable researchers to analyse how drivers may behave or adjust their behaviour after driving under automated mode for long periods of time. The connector also increases the length of the highway section of the Smart Road to 2.5 miles.

Scheduled to open in 2018, the Rural Roadway Expansion will test advanced vehicles on a track that will feature hilly and winding roads, short sight distances, small bridges and narrow sections, off-road sections, embankments, soft grass shoulders, natural foliage overhanging the road, and intersections. It will allow researchers to meet the industry demand for testing automated and AVs in urban, residential and rural areas.

Slated to open next year, the Automation Hub will house a new internship program focused on accelerating hands-on practical skill development for Virginia Tech students. Interns will have the opportunity to collaborate with researchers from the VDoT, the University, and the transportation institute as well as automotive industry partners on transportation research and development projects.

Theresa Mayer, vice president of research and innovation at Virginia Tech, said: “This is a critical time in transportation research, a time in which we are realizing the future of transportation at a more accelerated pace than ever before. Advanced vehicles are no longer a pipedream, the spark of an idea in an engineer’s imagination. These vehicles are here; they are being deployed on our nation’s roads."

“Our new testing facilities will undoubtedly enhance industry, governmental, and researcher needs for testing advanced-vehicle technology. It is imperative that our faculty and students work closely with such entities to help design, test, and deploy advanced systems for the betterment of the entire transportation community", Mayer added.

Related Content

  • Moxa provides clear vision for Caldecott Tunnel’s Fourth Bore
    September 15, 2014
    Caldecott Tunnel’s new Fourth Bore is utilising a bespoke high-capacity monitoring and communications network from Moxa. The Caldecott Tunnel connects Contra Costa and Alameda counties in Northern California and traditionally it has suffered severe congestion - especially during peak hours. Opened in 1937 as a twin-bore arrangement, by 1964 the increase in traffic volumes led to a third bore being added. Shortly after the third bore was opened a tidal flow was introduced with the centre bore alternating in
  • Xerox takes youthful view of future transport
    August 23, 2016
    Xerox’s David Cummins talks to Colin Sowman about the lessons for city authorities from its survey of younger peoples’ attitude to transport. There can be no better way to get a handle on the future of transport demand than to ask the younger generation about how they view and consume today’s transport. Sociologists have called this group Generation Z – those born between 1995 and 2007 – which will make up 40% of all US consumers by 2020.
  • Smartphone - the next technology for charging and tolling?
    January 25, 2012
    With all the debates over the most suitable future technology or technologies for charging and tolling, is it not time for the industry to look at what the rest of ITS is doing and bring a rank outsider - the smart phone - closer into the fold? By Jack Opiola, D'Artagnan Consulting LLC
  • Swarco champions smart mobility management
    September 16, 2021
    Swarco is looking forward to being back at an in-person event after 18 months of pandemic-related exhibition lockdown