Skip to main content

‘Formation flying’ engineering trains used to upgrade railway

In a bid to increase efficiencies and reduce delays for passengers, the UK’s Network Rail is trialling ‘formation flying’ engineering trains to repair and renew the 20,000 miles of railway track it is responsible for maintaining. It says this new approach to engineering could potentially save taxpayer-funded Network Rail US$313,000 (£250,000) per week in costs by allowing trains to run at higher speeds once engineering is complete. The pioneering technique was used successfully at Sandy, Bedfordshire, on
February 16, 2017 Read time: 2 mins
In a bid to increase efficiencies and reduce delays for passengers, the UK’s 5021 Network Rail is trialling ‘formation flying’ engineering trains to repair and renew the 20,000 miles of railway track it is responsible for maintaining. It says this new approach to engineering could potentially save taxpayer-funded Network Rail US$313,000 (£250,000) per week in costs by allowing trains to run at higher speeds once engineering is complete.

The pioneering technique was used successfully at Sandy, Bedfordshire, on a set of railway switches and crossings, which were being replaced as part of the Railway Upgrade Plan.

A pair of engineering trains were joined together connected by an umbilical and ran in parallel to simultaneously deliver tamping and dynamic track stabilisation (DTS) which simulated the equivalent of 200 trains passing over the tracks consecutively. Passenger trains were then able to start using the railway at speeds as high as 125mph as soon as the engineering team had finished because the track and ballast were firmly ‘bedded in’ – which meant Network Rail avoided thousands of pounds in compensation payments.

The news comes almost one year after Network Rail’s first successes with 125mph ‘high speed handbacks’ in January 2016 on regular plain line track. High speed handback ensures track is installed at each stage to its specific design tolerances, that care is taken while tamping to get the track to its final exact co-ordinates and that welding and stressing is completed as part of the core works.

Network Rail estimates that over US$6.2 million (£5 million) has already been saved by avoiding compensation payments since the start of the high speed handback programme.

For more information on companies in this article

Related Content

  • Come fly with me in Coventry
    April 25, 2022
    Urban-Air Port opens eVTOL demo in UK city for a month before taking concept on the road
  • Weigh in motion helps Caltrans minimise road damage
    March 19, 2014
    Colin Sowman finds out why California is still expanding its already comprehensive weigh-in-motion (WIM) system. California has the most complete weigh-in-motion (WIM) system in the United States and recently announced a US$1.6 million contract for another Commercial Vehicle Enforcement Facility (usually called a weigh station) near Mountain Pass. According to the California Department of Transportation (Caltrans), the aim is not to persecute offenders but to track vehicle weights in order to prevent or
  • Close shave for Brazilian project
    June 12, 2015
    Signing the order to equip a new control room just 45 days before the city hosts a major sporting event is challenging - but some deadlines just cannot be moved. There is nothing like a deadline to concentrate minds and effort as Mitsubishi and the Brazilian city of Belo Horizonte discovered in the run-up to the 2014 World Cup. Although municipal authorities had been considering a new command centre for years, it was the hosting of the World Cup last summer that provided the final impetus.
  • Telegra tackle integrated corridor management
    March 29, 2017
    Coordination is the key to successful integrated corridor management, argues Telegra’s chief operating officer, Branko Glad. The Centre for Economics and Business Research (CEBR) has calculated that in 2013, traffic congestion cost American citizens $124 billion ($78 billion of wasted time and fuel and $45 billion in indirect losses). In 2030 this figure is predicted to rise to $186 billion.