Skip to main content

First electric car ferry goes into operation in Norway

The world’s first electrical car and passenger ferry powered by batteries has entered service in Norway. The unique solution is a result of a competition that Ministry of Transport and Communications and the Norwegian Public Roads Administration launched in 2010. The ferry only uses 150 kWh per route, which corresponds to three days use of electricity in a standard Norwegian household. Built in conjunction with shipbuilder Fjellstrand, Siemens installed the complete electric propulsion system and install
May 19, 2015 Read time: 3 mins
The world’s first electrical car and passenger ferry powered by batteries has entered service in Norway. The unique solution is a result of a competition that Ministry of Transport and Communications and the Norwegian Public Roads Administration launched in 2010.

The ferry only uses 150 kWh per route, which corresponds to three days use of electricity in a standard Norwegian household. Built in conjunction with shipbuilder Fjellstrand, 189 Siemens installed the complete electric propulsion system and installed charging stations with lithium-ion batteries which are charged from hydro power. The change to battery power enables ship owner Norled to reduce the cost of fuel by up to 60 per cent.

As the power grid in the region is relatively weak, Siemens and Norled decided to install three battery packs: one lithium-ion battery on board the ferry and one at each pier to serve as a buffer. The 260 kWh units supply electricity to the ferry while it is in dock. The battery slowly recoups this energy from the grid until the ship returns to disembark passengers and recharge. The ship’s onboard batteries are recharged directly from the grid at night when the ferry is not in use.

Each battery pack corresponds to the effect of 1600 standard car batteries. The ferry will consume around two million kWh per year, whereas a traditional diesel ferry consumes at least one million litres of diesel a year and emits 570 tons of carbon dioxide and 15 metric tons of nitrogen oxides.

On board the ferry, Siemens installed its BlueDrive PlusC electric propulsion system, which includes a battery and steering system, thrust control for the propellers, an energy management system and an integrated alarm system. The integrated automation systems control and monitor the machineries and auxiliaries on the ferry and are connected via Siemens’ Profibus to all other subsystems.

The emission-free ferry was developed from the ground up. The ferry, which is 80 metres long and 20 metres wide, is driven by two electric motors, each with an output of 450 kilowatts. It is made exclusively of light aluminium, making it only half as heavy as a conventional ferry, despite its ten ton batteries and a capacity for 360 passengers and 120 vehicles.

Ship owner Norled operates on the ferry link across Sognefjord between Lavik and Oppedal, Norway. The fully electric ferry travels six kilometres across the fjord 34 times a day, with each trip taking around 20 minutes.

Related Content

  • Transport for London launches all-electric bus into service
    March 21, 2016
    Transport for London (TfL) has introduced what is said to be the world’s first zero-emission, long-range, all-electric BYD double-decker buses into service on a route operated by bus operator Metroline. Electric vehicle manufacturer BYD will fast charging equipment at Metroline’s Willesden bus garage in north London and provide driver training for the bus operators. BYD designed and developed the 33 foot long vehicles to TfL specifications, feature air conditioning, seats for 54 passengers and space for
  • California aims to generate electric power from traffic congestion
    April 20, 2017
    California is planning a US$2.3 million initiative that will generate electrical power from traffic, according to the San Francisco Chronicle. The California Energy Commission recently voted to fund two piezoelectricity projects, which convert pressure into power. One pilot will test a 200-foot-long piece of asphalt on UC-Merced’s campus, which is designing a 200-foot stretch of asphalt that will be sowed with inch-wide piezoelectric generators, which will be stacked within arrays below the road where it is
  • Cost Benefit: Don’t waste your energy
    October 28, 2021
    There are ways that we can harvest power from the world’s roads – without necessarily building new infrastructure. David Crawford investigates some of these new approaches
  • London Underground installs EV charge points
    August 28, 2013
    Siemens has completed the supply and installation of charging infrastructure for electric vehicles in twelve London Underground car parks across the capital for UK Power Network Services. The new network of sixty Siemens AC intelligent charge posts is fully integrated into Source London, the UK's largest electric vehicle membership scheme, with over 1,300 charge points. The charge points are supported by associated services including management, operation and maintenance and the supply of charging post m