Skip to main content

First electric car ferry goes into operation in Norway

The world’s first electrical car and passenger ferry powered by batteries has entered service in Norway. The unique solution is a result of a competition that Ministry of Transport and Communications and the Norwegian Public Roads Administration launched in 2010. The ferry only uses 150 kWh per route, which corresponds to three days use of electricity in a standard Norwegian household. Built in conjunction with shipbuilder Fjellstrand, Siemens installed the complete electric propulsion system and install
May 19, 2015 Read time: 3 mins
The world’s first electrical car and passenger ferry powered by batteries has entered service in Norway. The unique solution is a result of a competition that Ministry of Transport and Communications and the Norwegian Public Roads Administration launched in 2010.

The ferry only uses 150 kWh per route, which corresponds to three days use of electricity in a standard Norwegian household. Built in conjunction with shipbuilder Fjellstrand, 189 Siemens installed the complete electric propulsion system and installed charging stations with lithium-ion batteries which are charged from hydro power. The change to battery power enables ship owner Norled to reduce the cost of fuel by up to 60 per cent.

As the power grid in the region is relatively weak, Siemens and Norled decided to install three battery packs: one lithium-ion battery on board the ferry and one at each pier to serve as a buffer. The 260 kWh units supply electricity to the ferry while it is in dock. The battery slowly recoups this energy from the grid until the ship returns to disembark passengers and recharge. The ship’s onboard batteries are recharged directly from the grid at night when the ferry is not in use.

Each battery pack corresponds to the effect of 1600 standard car batteries. The ferry will consume around two million kWh per year, whereas a traditional diesel ferry consumes at least one million litres of diesel a year and emits 570 tons of carbon dioxide and 15 metric tons of nitrogen oxides.

On board the ferry, Siemens installed its BlueDrive PlusC electric propulsion system, which includes a battery and steering system, thrust control for the propellers, an energy management system and an integrated alarm system. The integrated automation systems control and monitor the machineries and auxiliaries on the ferry and are connected via Siemens’ Profibus to all other subsystems.

The emission-free ferry was developed from the ground up. The ferry, which is 80 metres long and 20 metres wide, is driven by two electric motors, each with an output of 450 kilowatts. It is made exclusively of light aluminium, making it only half as heavy as a conventional ferry, despite its ten ton batteries and a capacity for 360 passengers and 120 vehicles.

Ship owner Norled operates on the ferry link across Sognefjord between Lavik and Oppedal, Norway. The fully electric ferry travels six kilometres across the fjord 34 times a day, with each trip taking around 20 minutes.

For more information on companies in this article

Related Content

  • Siemens awarded TfL maintenance contracts
    August 27, 2014
    Siemens is to maintain traffic control equipment in the north and north-east London regions under two new traffic control maintenance services contracts awarded by Transport for London (TfL). The contracts represent two of the five contracts that will see London’s traffic signals upgraded to the latest energy-saving technology, as well as expanding the use of intelligent traffic signals and new crossings for pedestrians and cyclists. Worth in total around US$525 million for up to eight years, the five co
  • Battery bottleneck: EV roll-out at risk
    June 17, 2019
    In order for the take-up of electric vehicles – a key part of the future mobility mix - to grow, we need batteries. And that might prove tricky, reports Graham Anderson Industry and commodities experts fear that the growth in electric vehicles (EVs) could be much slower than predicted due to bottlenecks in global battery market supply chains. “People seem to think that the switch from the internal combustion engine to electric vehicles just means you plug your car in rather than fill it with petrol,” a
  • Wireless traffic data in real time
    January 31, 2012
    The effect of moving objects on the electromagnetic landscape set up by cellular telephony networks can be detected and interpreted to give real-time traffic data across large geographical areas at low cost. Here, we revisit the Celldar concept. Global economic downturn has pushed public-sector agencies, transport administrations among them, to push even harder for cost efficiencies. Unfortunately, when it comes to transport safety and efficiency the public sector often has to work up to a cost rather than
  • World first claimed for plugless power EV charging installations
    July 23, 2012
    Evatran has successfully completed the first three installations of its Plugless Power wireless electric vehicle (EV) charging technology with Apollo Launch partners The Hertz Corporation, Duke Energy, and the Clemson University International Centre for Automotive Research (CU-ICAR). It is claimed that these installations, on Nissan Leaf vehicles, represent the first passenger electric vehicles in the world with full wireless charging capability.