Skip to main content

Final 2012/2013 AERIS webinar

The fifth and final webinar of the AERIS Fall//Winter 2012-2013 Webinar Series will take place on Wednesday, March 13, 2013 at 1:00 pm EST. The webinar will describe the results of a recent connected vehicle field experiment performed in two locations (University of California at Riverside and the Turner Fairbank Highway Research Center). Complementary modelling results will also be described. The field experiment was conducted in August 2012 and was based on the AERIS Program's Eco-Approach and Departure a
March 1, 2013 Read time: 2 mins
The fifth and final webinar of the AERIS Fall//Winter 2012-2013 Webinar Series will take place on Wednesday, March 13, 2013 at 1:00 pm EST.

The webinar will describe the results of a recent connected vehicle field experiment performed in two locations (University of California at Riverside and the Turner Fairbank Highway Research Center). Complementary modelling results will also be described.
 
The field experiment was conducted in August 2012 and was based on the AERIS Program's Eco-Approach and Departure at Signalised Intersections application. The field experiment included a roadside equipment (RSE) unit installed at a traffic signal broadcasting signal phase and timing (SPaT) messages using 5.9 GHz dedicated short range communication (DSRC). SPaT messages were received by the in-vehicle application and uses to provide speed recommendations to the driver that encourage green approaches to signalised intersections. Green approaches include speed recommendations that when applied allow the vehicle to traverse the signalized intersection on green or decelerating to a stop in the most environmentally efficient manner. Results were measured in terms of fuel savings and carbon-dioxide (CO2) emissions reductions.

Dr Matthew Barth, the Director of the University of California, Riverside's Center for Environmental Research and Technology (CE-CERT), who conducted the study, will lead the webinar.  In addition, Dr Barth will discuss initial modeling efforts being conducted by the AERIS Program as they relate to Eco-Signal Operations.

Related Content

  • ASECAP examines tolling’s trials, tribulations and triumphs
    September 4, 2018
    If you want to get up to speed on the main issues facing the transport sector and tolling companies, ASECAP Study Days event in Ljubljana was a good place to start. Colin Sowman reports (Photographs: Louis David). Increasing populations, ever-higher technical and safety requirements, and electric and hybrid vehicles will provide both challenges and opportunities for tolling companies. The annual Study Days event organised by ASECAP (the European association for tolling companies) examined all of these aspec
  • Canadian authorities convinced of enforcement safety benefits
    November 28, 2012
    Cost-benefit analysis invariably finds highly in favour of speed and red light enforcement, particularly so in Edmonton in the Alberta province of Canada, where authorities need no convincing of the merits of road safety engineering. Justification of enforcement efforts on economic grounds has been reinforced this year, by a study of the costs and benefits of red light enforcement. New York-based economic research firm John Dunham & Associates carried out this latest analysis for American Traffic Solutions
  • USDOT offers free webinar on the connected vehicle workforce
    August 28, 2015
    The USDOT's Intelligent Transportation Systems (ITS) Professional Capacity Building (PCB) Program is to host a free Talking Technology and Transportation (T3) webinar to discuss workforce skills that support the future connected vehicle (CV) environment. The webinar, entitled Connected Vehicle Workforce, is scheduled for 10 September from 1:00 pm to 2:30 pm EST.
  • ProPart AV trial crosses the line
    March 25, 2020
    The perceived safety benefits of autonomous vehicles can only be realised with precise positioning. Ben Spencer reports from Sweden on work by a European consortium which aims to use the technology to allow a truck to carry out an automated lane change