Skip to main content

Final 2012/2013 AERIS webinar

The fifth and final webinar of the AERIS Fall//Winter 2012-2013 Webinar Series will take place on Wednesday, March 13, 2013 at 1:00 pm EST. The webinar will describe the results of a recent connected vehicle field experiment performed in two locations (University of California at Riverside and the Turner Fairbank Highway Research Center). Complementary modelling results will also be described. The field experiment was conducted in August 2012 and was based on the AERIS Program's Eco-Approach and Departure a
March 1, 2013 Read time: 2 mins
The fifth and final webinar of the AERIS Fall//Winter 2012-2013 Webinar Series will take place on Wednesday, March 13, 2013 at 1:00 pm EST.

The webinar will describe the results of a recent connected vehicle field experiment performed in two locations (University of California at Riverside and the Turner Fairbank Highway Research Center). Complementary modelling results will also be described.
 
The field experiment was conducted in August 2012 and was based on the AERIS Program's Eco-Approach and Departure at Signalised Intersections application. The field experiment included a roadside equipment (RSE) unit installed at a traffic signal broadcasting signal phase and timing (SPaT) messages using 5.9 GHz dedicated short range communication (DSRC). SPaT messages were received by the in-vehicle application and uses to provide speed recommendations to the driver that encourage green approaches to signalised intersections. Green approaches include speed recommendations that when applied allow the vehicle to traverse the signalized intersection on green or decelerating to a stop in the most environmentally efficient manner. Results were measured in terms of fuel savings and carbon-dioxide (CO2) emissions reductions.

Dr Matthew Barth, the Director of the University of California, Riverside's Center for Environmental Research and Technology (CE-CERT), who conducted the study, will lead the webinar.  In addition, Dr Barth will discuss initial modeling efforts being conducted by the AERIS Program as they relate to Eco-Signal Operations.

Related Content

  • July 24, 2017
    EastLink receives special commendation from ADVI
    One of Australia’s largest tollways, EastLink in Victoria, has received a Special Commendation from the Australia & New Zealand Driverless Vehicle Initiative (ADVI), for the trials of automated vehicle technologies underway on EastLink. The trials are being undertaken by EastLink in partnership with VicRoads, ARRB, La Trobe University and RACV, with the assistance of major vehicle manufacturers, including BMW, Honda, Mercedes, Mitsubishi and Volvo. The most recent technology demonstration involved the new T
  • August 22, 2012
    US DoT launches largest-ever road test of connected vehicle crash avoidance technology
    Nearly 3,000 cars, trucks and buses equipped with connected Wi-Fi technology to enable vehicles and infrastructure to ‘talk’ to each other in real time to help avoid crashes and improve traffic flow, began traversing Ann Arbor's streets yesterday as part of a year-long safety pilot project by the US Department of Transportation. Ray LaHood, US Transportation Secretary, joined elected officials and industry and community leaders on the University of Michigan campus to launch the second phase of the Safety Pi
  • December 19, 2017
    USDoT pilots show win-win potential for connected vehicles
    Pete Goldin discovers the state of play with connected vehicles trials in the US and the impact of Hurricane Irma on Tampa’s pilot. The US Department of Transportation’s (USDoT’s) connected vehicle (CV) pilot sites have moved into phase 2 of the deployment programme– design, build, test and, maybe most importantly, collaborate.
  • December 9, 2013
    SwRI and USDOT operate connected vehicle affiliated test bed
    In the US, the Texas-based Southwest Research Institute (SwRI) is operating a connected vehicle affiliated test bed in cooperation with the US Department of Transportation (USDOT) Research and Innovative Technology Administration. The DOT test bed project facilitates information exchange as well as access to tools and resources across other test bed facilities to support and encourage consistent future deployment of connected vehicle technologies. The project aims to advance the technology for full deplo