Skip to main content

Final 2012/2013 AERIS webinar

The fifth and final webinar of the AERIS Fall//Winter 2012-2013 Webinar Series will take place on Wednesday, March 13, 2013 at 1:00 pm EST. The webinar will describe the results of a recent connected vehicle field experiment performed in two locations (University of California at Riverside and the Turner Fairbank Highway Research Center). Complementary modelling results will also be described. The field experiment was conducted in August 2012 and was based on the AERIS Program's Eco-Approach and Departure a
March 1, 2013 Read time: 2 mins
The fifth and final webinar of the AERIS Fall//Winter 2012-2013 Webinar Series will take place on Wednesday, March 13, 2013 at 1:00 pm EST.

The webinar will describe the results of a recent connected vehicle field experiment performed in two locations (University of California at Riverside and the Turner Fairbank Highway Research Center). Complementary modelling results will also be described.
 
The field experiment was conducted in August 2012 and was based on the AERIS Program's Eco-Approach and Departure at Signalised Intersections application. The field experiment included a roadside equipment (RSE) unit installed at a traffic signal broadcasting signal phase and timing (SPaT) messages using 5.9 GHz dedicated short range communication (DSRC). SPaT messages were received by the in-vehicle application and uses to provide speed recommendations to the driver that encourage green approaches to signalised intersections. Green approaches include speed recommendations that when applied allow the vehicle to traverse the signalized intersection on green or decelerating to a stop in the most environmentally efficient manner. Results were measured in terms of fuel savings and carbon-dioxide (CO2) emissions reductions.

Dr Matthew Barth, the Director of the University of California, Riverside's Center for Environmental Research and Technology (CE-CERT), who conducted the study, will lead the webinar.  In addition, Dr Barth will discuss initial modeling efforts being conducted by the AERIS Program as they relate to Eco-Signal Operations.

Related Content

  • Europe’s heavy trucks ‘no more fuel-efficient than ten years ago’
    December 4, 2015
    A study by the International Council on Clean Transportation (ICCT) claims that trucks in the European Union are no more fuel-efficient than they were a decade ago. The study, which analyses data from the European commercial trucking market, looking at key member states, manufacturers and fuel consumption trend, found that heavy-duty vehicles represent only four per cent of the on-road fleet in the European Union, but are responsible for 30 per cent of on-road CO2 emissions. In contrast, the study cla
  • Freight poses growing problem for city authorities
    March 3, 2017
    Wes Guckert considers possible solutions and countermeasures to the problems of increased freight deliveries in growing cities. In January 2016, the US Department of Transportation (USDoT) conducted a session on the SmartCity Challenge and Urban Freight and Logistics. This session was a follow-up to the USDoT report titled, Beyond Traffic 2045.
  • MIT researchers hack into traffic lights
    August 22, 2014
    With permission from a local road agency, researchers in from the University of Michigan hacked into nearly 100 wirelessly networked traffic lights, highlighting security issues that they say are likely to pervade networked traffic infrastructure around the country. More than 40 states currently use such systems to keep traffic flowing as efficiently as possible, helping to reduce emissions and delays. The team, led by University of Michigan computer scientist J. Alex Halderman, found three major weaknes
  • ITS America concerned over use of 5GHz spectrum band
    February 28, 2013
    ITS America has raised con­cerns with the US Federal Communications Commission (FCC) over the potential use of the 5GHz band spec­trum by unlicensed national information infrastructure devices. It wants to protect the 5.9GHz band for dedicated short-range communications (DSRC)-based systems. These crucially underpin the development of connected vehicle (CV) technologies which could help slash the US’ annual tally of six million road traffic accidents and over 30,000 deaths. Within the US Department of Trans